A Gentle Introduction

to Neural Networks
(with Python)

Tariq Rashid @postenterprise

EuroPython Bilbao July 2016

Background

ldeas

DIY w5 live. demal
Handwriting
Thoughts -

Background

Start With Two Questions

locate people in this photo

add these numbers

+ + 4+ + + +

2403343781289312
2843033712837981
2362142787897881
3256541312323213
9864479802118978
8976677987987897
8981257890087988

= ?

Al is Huge!

eepM:
Go Woriq cha;’;M-' Nd chajys ,,
o

o 76 by Jon Russey, o on Lee p A,
Shangs @ n u m ! (@jonryssey, sed

& ausmess | . cars Set o
Self-driving £14bn MOLOX

Self-

Google’s and Go

nature International weekly journal of science

Home ‘ News & Comment ‘ Research | Careers & Jobs ‘ Current Issue ‘ ‘ Audio & Video | Fo

ARTICLE PREVIEW

view full access options »

NATURE | ARTICLE <y =
HEEEH

Mastering the game of Go with deep neural

networks and tree search
—————

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, llya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis

Affiliations | Contributions | Corresponding authors

|deas

Simple Predicting Machine

question —‘é think [—-? answer

Simple Predicting Machine

process
i nput a—%

(calculate)

Kilometres to Miles

miles =
kilometres x
0.5

kilometres ——%

100

T —"'? miles

50

random s’rar’r‘m pararmeter

'mdarnodej- this one is linear

Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 50

correct miles
e2.137

ervor
12.1357

R not ﬁrea’r

Kilometres to Miles

kilometres ——% kilometres x | ——? calculated miles

100 e0

correct miles
e2.137

ervor
2!15 7

R better

Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 70

correct miles
e2.137

e

ervor -
-7.863

R— worse |

Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 el

correct miles
e2.137

ervor -
1.137

R_

best yet !

Key Points

w something works exactly? Try @

1. Dont know ho
model with adjustab\e parameters.

9. Usethe error O refine the parameters.

Garden Bugs

Widths and Lengths of Garden Bugs

GG CC C
G ladybivds
3

caterpillars C

%CC

R e

=) S e

width

Classifying Bugs

Widths and Lengths of Garden Bugs

-— .-.{;Ie-.-..hr

width

Classifying Bugs

Widths and Lenghts of Garden Bugs

S :

length
O

Classifying Bugs

Widths and Lengths of Garden Bugs

N oo
8
7. %

e

e e —— W g -

width

Classifying Bugs

Classifying an Unknown Bug

width

Key Points

da like predicting things.

1. Classifyingd things 1S kin

Learning from Data

Example Width Length Bug
1 3.0 1.0 ladybird
2 1.0 3.0 caterpillar

Learning from Data

Training Data for Classifying Bugs

> C

[

caterpillar

ladybird

J

: C

width

Learning from Data

Training Data for Classifying Bugs

S C

not a 3000\ separator

1 Yy =(0.25)x C

Learning from Data

Training Data for Classifying Bugs

S C

'g, 2 shift the fine up
3 Just above the ‘rra\r\"\nﬁ data point

Learning from Data

h final refinement
[Yy =(290) x

refined
Yy = (0.3667) x

I C initial
‘_"—-f"-.—d’ - = {025] x

How Do We Update The Parameter?

length

t = (A + AAX
y = Ax error = target - actual

I E=cA+ AR - Ax

// AR =E/x

oh nol
each update ignores
final refinement .
h . “;: (2.90) x“ Prewous QxamPIes
5 -
'ﬁ, 2
-§ refined

Yy = (0.3667) x

G initial
S y=(029)x

Calm Down the Learning

length

t=(A+ AAX

s T AM=L-CE/%

leam‘\rﬁ rate

Calm Down the Learning

Ieam‘\nﬁ rate = 0.5

second moderated refinement
y = (1.6042) x

length

First moderated refinement
y = (0.3083) x

..-'-"""",".
initial
y =(0.25) x

width

Key Points

earning is good - ensures you
data, and reduces impact of

g data.

1. Moderating your |
|earn from all your
outliers orf noisy trainin

Boolean Logic

IF | have eaten my vegetables AND | am still hungry
THEN | can have ice cream.

IF it's the weekend OR | am on annual leave THEN I’ll
go to the park.

Input A Input B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Boolean Logic

input A

logical

function

input B

Boolean Logic

logical OR
logical AND ogica

(031}0 \ 01‘1) {DJ:L)G G 1,1)

dividing line

&

dividing line

h‘i

7 c, 0,0) {‘;{1 1)
(©.0) N(1,0) © \ »

XOR Puzzle!

Input A Input B XOR
0 0 0
0 1 1
1 0 1
1 1 0

logical XOR
(0,1)0 \' Oz,;}

™

N
N\
/ i N\
?
N\
N

(O,O)G QI,O}

XOR Solution!

logical XOR

@1,1}

w Uge more than one node!

Key Points

blems can't be solved with justa single

1. Some pro
|assifier.

simple linear ©

se multiple nodes working together to

2. Youcanu
y of these problems.

solve man

Brains in Nature

e

terminals

Brains in Nature

brain 0.4 grams 11,000 neurons

nature's braing can eat, G& navigate, &‘Bh’r,
communicate, Pla& A .

« and +he3're resiient

302 neurons

& =N

37 billion neurons

(humans 20 billion)

https://en.wikipedia.org/wiki/List of animals_by number_of neurons
https://faculty.washington.edu/chudler/facts.html

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html
https://faculty.washington.edu/chudler/facts.html

1) =
0] O

Brains in Nature

output

.

>
threshold

step function

input

output

sigmoid function

Iojt&ﬁc Lunction

y=4/c+e™

e input

Artificial Neuron

Sum inputs

X =
a+b+e i

9

ﬁ threshold ~ |

sigmoid

function

y(x)

——5 output y

Artificial Neural Network .. finally!

layer 1 layer 2 layer 3

pCiv iy ch
ﬂowo OJ“

L Qﬂ,__w 3 ;/__ F;s@ .

neurons connections

inputs

Where Does The Learning Happen?

inputs

— O:f_ﬁéo " o BN
7 \
- OB

fink we‘Bh’r?

sigmoid £unction slope’

Key Points

ophisticated things, and
to damage and imperfect

puting.

prains can dos
silient
trad'mona\ com

4. Natural
are incredibly re

signals -- unlike

Y biological brains partly inspired

2. Trying to cop
artificial neural networks.
s are the ad]ustab\e parameter -it's

3. Link weight
arning happens.-

where the le

Feeding Signals Forward

layer 1 layer 2

- Qom0 -

nputs outputs

L _/m\“O

1.0

Feeding Signals Forward

sigmoid)
threshold
function |

y(x)

Feeding Signals Forward

layer 1 layer 2

w, ,=04
1.0 . O —> 07408
% /

Inputs outputs

- O e
w,,=0.8

2.5

Matrix Multiplication

x=(input_1*w,)+ (input 2 *w,)

x=(input_ 1 *w_)+ (input 2 *w,,)

Matrix Multiplication

weights ‘mcom‘m& signals
W, W, input_1 (input 1 * w,)+ (input 2 * w,)
W, W,, input_2 (input_2 * w,)+ (input 2 *w,)

Wl =X

dot proo\uc’r

Key Points

|lations can be

dforward calcu
rix mu\tip\ication, no

isely as mat

expressed conc
pe the network.

matter what sha
ages can do matrix

ming langu
ntly and quickly.

2. Some program
Iy efficie

mu\tip\icat'lon rea

Network Error

Network Error

3 3/4 ervor
-.._‘__“‘ é\

output
T i
7 ervor

1/4 ervor

Internal Error

hidden,1

eoutput,z

Internal Error

input hidden ouput
layer layer layer

£ o7 06 b e, =1.5
i & 9 P e C W,,= 2.0 > i
\ / Wﬂ:& 04

—(2 M —>

e -1 e

outputs

Matrices Again!

wll W12. 63_
ervor, ... = L
W:Z.i W:z?. 62
ervor = w' > ervror

hidden hidden_output output

Key Points

se the error to guide how we

1. Remember we u
_link weights.

refine a model's parameter

s is easy - the

at the output node
red and actual

2. The error
the desi

difference between

outputs.
't obvious. A

ternal nodes isn
tin proportio

his to split i nto

5. The errof atin
heuristic approac
the link weights.

4.

Yes, But How Do We Actually Update The Weights?

Qaamagghhh I

Perfect is the Enemy of Good

landscage e a compﬁca'teo\ di€ticult mathematical function ..
w with all Kinds of lumps, bumes, kinks w

Gradient Descent

Y = (x-1+1 g = (x-1y+1

next steps .
positive
slope

negative
slope

> =

smaler Srachen’r “ 3ou‘re closer to the
bottom . take smaller steps?

Key Points

vershooting by

the chance of o
ient gets shallower.

9. You can avoid
steps if the grad

taking smaller

isa difficult function

3. The error of @ neural network |
i descent

of the link weights .-
will help -

Climbing Down the Network Error Landscape

/\ neural network

Ervor

7 X
%

network link weights

v

i

we need to £ind this arao\ien’r

Error Gradient

E = (desired - actual)?
/

achool level calculus Cchain rule)

b

dE/dw. =-¢e .0 .(4d-0).0
] J J !

&

\

previous node

A Senﬂe infro to calcuus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html
http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

Updating the Weights

mMove w} in the opposite direction to

+heslope
oE
new wy = old R
awjk

rerember that Ieam‘ma rate

DIY

Python Class and Functions

Neural Network
Class

Initialise Train Query

r T I

set size, initial weights do the leaming query for answers

Python has Cool Tools

matrix maths

ey

sy
matelotiib
notebook

http://www.numpy.org
http://www.numpy.org
http://www.scipy.org/scipylib/index.html
http://www.scipy.org/scipylib/index.html
http://matplotlib.org
http://matplotlib.org
https://www.continuum.io/why-anaconda
https://www.continuum.io/why-anaconda

Function - Initialise

initialise the neural network

def __init_ (self, inputnodes, hiddennodes, outputnodes, learningrate):
set number of nodes in each 1input, hidden, output Llayer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes

Link weight matrices, wih and who

weights 1inside the arrays are w_1i_j, where Link is from node i to node j in the next Layer
wll w21

wl2 w22 etc

self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.onodes, -90.5), (self.onodes, self.hnodes))

Learning rate
self.1lr = learningrate

activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)

pass

. , random initial we‘tﬁh’fs

Function - Query

combined we‘gshfed sif,nals nto hidden
B\jQ\‘

then S‘Brno'\o\ applied

query the neural network
def query(self, inputs_list):
convert inputs List to 2d array
inputs = numpy.array(inputs_list, ndmin=2).T

calculate signals into hidden Layer

hidden_inputs = numpy.dot(self.wih, inputs)

calculate the signals emerging from hidden Layer
hidden outputs = self.activation function(hidden_inputs)

calculate signals into final output Layer
final_inputs = numpy.dot(self.who, hidden_outputs)
calculate the signals emerging from final output Layer

final outputs = self.activation function(final_ inputs)

return final outputs

Oumpydot sirilar for output layer

Function - Train

train the neural network
def train(self, inputs_list, targets_list):
convert 1inputs Llist to 2d array same feed Lorward as before
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T

calculate signals into hidden Layer

hidden_inputs = numpy.dot(self.wih, inputs)

calculate the signals emerging from hidden Layer
hidden outputs = self.activation function(hidden_inputs)

calculate signals into final output Layer om-eu* Bﬁe\‘ errors
final_inputs = numpy.dot(self.who, hidden_outputs)

calculate the signals emerging from final output Layer

final outputs = self.activation function(final_ inputs) hidden Eﬁfu'ewvors
output Layer error is the (target - actual) ! :’

output_errors = targets - final_outputs

hidden Layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)

update the weights for the Links between the hidden and output Layers
self.who += self.lr * numpy.dot((output_errors * final outputs * (1.0 - final outputs)), numpy.
transpose(hidden_outputs))

update the weights for the Links between the input and hidden Layers
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.

transpose(inputs)) 0§fl~__
update we’Bh'rs

pass

Handwriting

Handwritten Numbers Challenge

- .La.bEI.iST. s . .La.bEI.iSZ. e i .La.bEI.iE'l. . i i .La.bEI.i54. o
st | 51 ! 5t | S5t 5t !

10}] 10} | 0} | 10} 10| |

15} § 15| | 15| | 15 | 15| |

20 | 0} | 20} | 20 0} !

25 | R 5L g 251 g 25 | 5 g
0 5 10 15 20 5 0 51015 20 5 0 5 10 15 20 5 0 0 5 1015 20 5
5 ILalbelliS].l _ . ILalbeIIif.f-ll _ i .La.bel.iSQ. _ = i .La.bEI.iSQ. _
5F R 51 R 51 g 51 51 4

10| - 10} i 10| | 10 | - 10 |-

151 | 15} ! 15 | 15 | 15

20| § 0} | 20| | 20| § 0|

E-I a1 25 : g 25:] N E: R ET

MNIST Datasets

In [8]):

In [9]):

Out[9]:

In [10]:

out[10]:

MOIST dataset:
60,000 training data examples

{0,000 test data examples

data file = open{"mnist dataset/mnist train 100.csv", 'r")
data_list = data file.readlines()
data_file.close()

len{data_list)

100

data_ list[0]

's,0,
0,0
,0,3,18,18,18,126,136,175,26,166,255,247,127,0,
0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,25
3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,
90,139,253,190,2,0,11
,190,253,70,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,81,240,253,253,119,25,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,249,253,249,64,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,
253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,13
5,132,16,0,
0,0\n"

http://pjreddie.com/projects/mnist-in-csv/
http://pjreddie.com/projects/mnist-in-csv/

MNIST Datasets

In [8): data file = open("mnist_dataset/mnist_train 100.csv", 'r')
data_list = data file.readlines()
data_file.close()

In [9]: len(data_list)

Out[9]: 100

gutrioyy °‘'s,o0.,¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,0,0,90,

0,0,040,0

¥v,0,3,186,18,18,126,136,175,26,166,255,247,127,0,

0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,25

3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0

EB‘;&L' ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,
9¢0,139, 253,190, 2,0,
,190,253,70,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,9,0,0,0,0,81,240,253,253,119,25,0,45, 186,253, 253,150,27,0,0,0,0,0,0,0, 1Y eixels
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,249,253,249, 64, 0,0 ©
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46, 130,183, 253,253, 207, 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39, 148,229, 253, values

253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,13
5,132,16,0, 0,0, 0,
o,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0\n"

In [32]: all values = data list[0].split(',")
image_array = numpy.asfarray(all_values[1l:]).reshape((28,28))
matplotlib.pyplot.imshow(image array, cmap='Greys', interpolation='None')

Out[32]: <matplotlib.image.AxesImage at 0x108818cc0>

oF r T T - —

10

| S—— =& by 28 pixel image

Output Layer Values

olu;tp Yt fabel example “s5” example “0” example “q”’
yer

@ o 0.00 oas 0.02
@ 1 0.00 0.00 0.00
@ 2 o.o1 o0.01 o.o1
@ 3 0.00 0.01 0.01
@ 4 o0.01 0.02 0.40
@ s - oaa 0.00 0.01
@ 6 0.00 0.00 o.o1
@ 7 0.00 0.00 0.00
@ g 0.02 0.00 o.01
@ q o0.01 0.02 036

Experiments

performance

Performance and Hidden Nodes

MNIST dataset with 3-layer neural network

0.95

D i

0.9

0.85

0.8

T T
100 200 300 400

number of hidden nodes

600

performance

Performance and Learning Rate

MNIST dataset with 3-layer neural network

0.98

0.96

Y el Y

0.94

0.92 -

08

"

S

e

0.84

0.82

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7

learning rate

0.8 0.9

performance

Performance and Epoch

MNIST dataset with 3-layer neural network

0.964

) N

0.962

0.96

SN\

0.958

0.956

0.954 -

0.952

0.95

0.948

number of epochs

20

%% e very Sooc\!

we've used simple
onBano\ code

ideas

More Experiments

B~

, , ﬁ
oviginal rotated +10° votated -10°
0F T T g T] 0OF T T T T T OF T T T T T
5 - 5 st
10 : 10 . 0}
15] 15 | 5|
20 20 201
=] sl] %
¢ 5 1 1 2 5 0 5 1 1 2 =5 0 5 1 1B » =5

Performance and Epoch

MNIST dataset with 3-layer neural network

0a787

0.98 v

/’—'“_.\10 epochs

0.975 /_—’/_’"\\o
0.97

@
E / 5 epochs
15
£ 0.965 -
Y

0.96

0.955

0.95 T T T T T

0 5 10 15 20 25 30

additional images at a+/- angle (degrees)

Thoughts

Peek Inside The Mind Of a Neural Network?

normal forward query

-

.
Y
neural

network

reverse back query

neural
network

Peek Inside The Mind Of a Neural Network?

this i=n't done ver
often

Thanks!

ive demol

Finding Out More

MAKE YOUR

makeyourownneuralnetwork.b|OgSQOt.co.uk O W N
NEURAL NETWORK

d ithu b.com/makeyourownneuralnetwork

www.dMaZON.co.uk/dp/BO1EER4Z4G

twitter.com/myoneuralnet

A gentle journey through the mathematics of
neural networks, and making your own
using the Python computer language.

slides goo.ql/JKsb62 TARIQ RASHID

http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
http://goo.gl/JKsb62
http://goo.gl/JKsb62
http://goo.gl/JKsb62

Raspberry Pi Zero

't all works on & ?aspbem:, Pi 2ero
w And it oniy costes Fu/ 451

