
A Gentle Introduction
to Neural Networks
(with Python)

Tariq Rashid @postenterprise

EuroPython Bilbao July 2016

Background
Ideas
DIY
Handwriting
Thoughts

… and a live demo!

Background

Start With Two Questions

2403343781289312
+ 2843033712837981
+ 2362142787897881
+ 3256541312323213
+ 9864479802118978
+ 8976677987987897
+ 8981257890087988

= ?

locate people in this photo add these numbers

AI is Huge!

Google’s and Go

Ideas

Simple Predicting Machine

Simple Predicting Machine

Kilometres to Miles

try a model - this one is linear

random starting parameter

Kilometres to Miles

not great

Kilometres to Miles

better

Kilometres to Miles

worse !

Kilometres to Miles

best yet !

Key Points

1. Don’t know how something works exactly? Try a

model with adjustable parameters.

2. Use the error to refine the parameters.

Garden Bugs

Classifying Bugs

Classifying Bugs

Classifying Bugs

Classifying Bugs

Key Points

1. Classifying things is kinda like predicting things.

Learning from Data

Example Width Length Bug

1 3.0 1.0 ladybird

2 1.0 3.0 caterpillar

Learning from Data

Learning from Data

not a good separator

Learning from Data

shift the line up
just above the training data point

Learning from Data

How Do We Update The Parameter?

error = target - actual

E = (A + ΔA)x - Ax

ΔA = E / x

Hang On!

Oh no!
each update ignores
previous examples

Calm Down the Learning

ΔA = L · (E / x)

learning rate

Calm Down the Learning

learning rate = 0.5

Key Points

1. Moderating your learning is good - ensures you

learn from all your data, and reduces impact of

outliers or noisy training data.

Boolean Logic

Input A Input B AND OR

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

IF I have eaten my vegetables AND I am still hungry
THEN I can have ice cream.

IF it’s the weekend OR I am on annual leave THEN I’ll
go to the park.

Boolean Logic

Boolean Logic

XOR Puzzle!

Input A Input B XOR

0 0 0

0 1 1

1 0 1

1 1 0

XOR Solution!

… Use more than one node!

Key Points

1. Some problems can’t be solved with just a single

simple linear classifier.

2. You can use multiple nodes working together to

solve many of these problems.

Brains in Nature

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html

Brains in Nature

brain 0.4 grams 11,000 neurons

302 neurons

37 billion neurons

(humans 20 billion)

nature’s brains can eat, fly, navigate, fight,
communicate, play, learn …

.. and they’re resilient

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html
https://faculty.washington.edu/chudler/facts.html

Brains in Nature

Brains in Nature

logistic function

y = 1 / (1 + e-x)

Brains in Nature

Artificial Neuron

Artificial Neural Network .. finally!

Pause.

...

Where Does The Learning Happen?

sigmoid function slope?link weight?

Key Points

1. Natural brains can do sophisticated things, and

are incredibly resilient to damage and imperfect

signals .. unlike traditional computing.

2. Trying to copy biological brains partly inspired

artificial neural networks.

3. Link weights are the adjustable parameter - it’s

where the learning happens.

Feeding Signals Forward

Feeding Signals Forward

Feeding Signals Forward

Matrix Multiplication

Matrix Multiplication

W·I = X

dot product

weights incoming signals

Key Points

1. The many feedforward calculations can be

expressed concisely as matrix multiplication, no

matter what shape the network.

2. Some programming languages can do matrix

multiplication really efficiently and quickly.

Network Error

Network Error

Internal Error

Internal Error

Matrices Again!

Key Points

1. Remember we use the error to guide how we

refine a model’s parameter - link weights.

2. The error at the output nodes is easy - the

difference between the desired and actual

outputs.

3. The error at internal nodes isn’t obvious. A

heuristic approach is to split it in proportion to

the link weights.

4. … and back propagating the error can be

expressed as a matrix multiplication too!

Yes, But How Do We Actually Update The Weights?

Aaarrrggghhh !!

Perfect is the Enemy of Good

landscape is a complicated difficult mathematical function ..
… with all kinds of lumps, bumps, kinks …

Gradient Descent

smaller gradient .. you’re closer to the
bottom … take smaller steps?

Key Points

1. Gradient descent is a practical way of finding the

minimum of difficult functions.

2. You can avoid the chance of overshooting by

taking smaller steps if the gradient gets shallower.

3. The error of a neural network is a difficult function

of the link weights … so maybe gradient descent

will help ...

Climbing Down the Network Error Landscape

We need to find this gradient

Error Gradient

A gentle intro to calculus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

E = (desired - actual)2

dE/dwij = - ej . oj . (1 - oj) . oi

school level calculus (chain rule)

previous node

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html
http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

Updating the Weights

remember that learning rate

move wjk in the opposite direction to
the slope

DIY

Python Class and Functions

Neural Network
Class

Initialise Train Query

set size, initial weights do the learning query for answers

Python has Cool Tools

numpy
scipy

matplotlib
notebook

matrix maths

http://www.numpy.org
http://www.numpy.org
http://www.scipy.org/scipylib/index.html
http://www.scipy.org/scipylib/index.html
http://matplotlib.org
http://matplotlib.org
https://www.continuum.io/why-anaconda
https://www.continuum.io/why-anaconda

Function - Initialise

 # initialise the neural network

 def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):

 # set number of nodes in each input, hidden, output layer

 self.inodes = inputnodes

 self.hnodes = hiddennodes

 self.onodes = outputnodes

 # link weight matrices, wih and who

 # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer

 # w11 w21

 # w12 w22 etc

 self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))

 self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))

 # learning rate

 self.lr = learningrate

 # activation function is the sigmoid function

 self.activation_function = lambda x: scipy.special.expit(x)

 pass

random initial weights
numpy.random.normal()

Function - Query

combined weighted signals into hidden
layer

 # query the neural network

 def query(self, inputs_list):

 # convert inputs list to 2d array

 inputs = numpy.array(inputs_list, ndmin=2).T

 # calculate signals into hidden layer

 hidden_inputs = numpy.dot(self.wih, inputs)

 # calculate the signals emerging from hidden layer

 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer

 final_inputs = numpy.dot(self.who, hidden_outputs)

 # calculate the signals emerging from final output layer

 final_outputs = self.activation_function(final_inputs)

 return final_outputs

then sigmoid applied

similar for output layernumpy.dot()

Function - Train

 # train the neural network

 def train(self, inputs_list, targets_list):

 # convert inputs list to 2d array

 inputs = numpy.array(inputs_list, ndmin=2).T

 targets = numpy.array(targets_list, ndmin=2).T

 # calculate signals into hidden layer

 hidden_inputs = numpy.dot(self.wih, inputs)

 # calculate the signals emerging from hidden layer

 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer

 final_inputs = numpy.dot(self.who, hidden_outputs)

 # calculate the signals emerging from final output layer

 final_outputs = self.activation_function(final_inputs)

 # output layer error is the (target - actual)

 output_errors = targets - final_outputs

 # hidden layer error is the output_errors, split by weights, recombined at hidden nodes

 hidden_errors = numpy.dot(self.who.T, output_errors)

 # update the weights for the links between the hidden and output layers

 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.

transpose(hidden_outputs))

 # update the weights for the links between the input and hidden layers

 self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.

transpose(inputs))

 pass

output layer errors

hidden layer errors

update weights

same feed forward as before

Handwriting

Handwritten Numbers Challenge

MNIST Datasets

MNIST dataset:

60,000 training data examples

10,000 test data examples

http://pjreddie.com/projects/mnist-in-csv/
http://pjreddie.com/projects/mnist-in-csv/

MNIST Datasets

label

784 pixels
values

28 by 28 pixel image

Output Layer Values

Experiments

96% is very good!

we’ve only used simple ideas
and code

random processes
do go wonky!

More Experiments

98% is amazing!

Thoughts

Peek Inside The Mind Of a Neural Network?

Peek Inside The Mind Of a Neural Network?

this isn’t done very
often

Thanks!

live demo!

Finding Out More

makeyourownneuralnetwork.blogspot.co.uk

github.com/makeyourownneuralnetwork

www.amazon.co.uk/dp/B01EER4Z4G

twitter.com/myoneuralnet

slides goo.gl/JKsb62

http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
http://goo.gl/JKsb62
http://goo.gl/JKsb62
http://goo.gl/JKsb62

Raspberry Pi Zero

It all works on a Raspberry Pi Zero
 … and it only costs £4 / $5 !!

