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Background



Start With Two Questions

locate people in this photo

add these numbers
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2403343781289312
2843033712837981
2362142787897881
3256541312323213
9864479802118978
8976677987987897
8981257890087988
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Google’s and Go
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Simple Predicting Machine

question —‘é think [—-? answer



Simple Predicting Machine

process
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(calculate)




Kilometres to Miles

miles =
kilometres x
0.5

kilometres ——%

100

T —"'? miles

50

random s’rar’r‘m pararmeter

'mdarnodej- this one is linear



Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 50

correct miles
e2.137

ervor
12.1357

R not ﬁrea’r



Kilometres to Miles

kilometres ——% kilometres x | ——? calculated miles

100 e0

correct miles
e2.137

ervor
2!15 7

R better



Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 70

correct miles
e2.137

e

ervor -
-7.863

R— worse |



Kilometres to Miles

kilometres ——% kilometres x | -——? calculated miles

100 el

correct miles
e2.137

ervor -
1.137

R_

best yet !



Key Points

w something works exactly? Try @

1. Dont know ho
model with adjustab\e parameters.

9. Usethe error O refine the parameters.




Garden Bugs

Widths and Lengths of Garden Bugs
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Classifying Bugs

Widths and Lengths of Garden Bugs
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width



Classifying Bugs

Widths and Lenghts of Garden Bugs
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Classifying Bugs

Widths and Lengths of Garden Bugs
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Classifying Bugs

Classifying an Unknown Bug

width



Key Points

da like predicting things.

1. Classifyingd things 1S kin




Learning from Data

Example Width Length Bug
1 3.0 1.0 ladybird
2 1.0 3.0 caterpillar




Learning from Data

Training Data for Classifying Bugs
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Learning from Data

Training Data for Classifying Bugs

S C

not a 3000\ separator

1 Yy =(0.25)x C



Learning from Data

Training Data for Classifying Bugs

S C

'g, 2 shift the fine up
3 Just above the ‘rra\r\"\nﬁ data point




Learning from Data

h final refinement
[ Yy =(290) x

refined
Yy = (0.3667) x

I C initial
‘_"—-f"-.—d’ - = {025] x



How Do We Update The Parameter?

length

t = (A + AAX
y = Ax error = target - actual

I E=cA+ AR - Ax

// AR =E/x




oh nol
each update ignores
final refinement .
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Calm Down the Learning

length

t=(A+ AAX

s T AM=L-CE/%

leam‘\rﬁ rate



Calm Down the Learning

Ieam‘\nﬁ rate = 0.5

second moderated refinement
y = (1.6042) x

length

First moderated refinement
y = (0.3083) x

..-'-"""",".
initial
y =(0.25) x

width



Key Points

earning is good - ensures you
data, and reduces impact of

g data.

1. Moderating your |
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Boolean Logic

IF | have eaten my vegetables AND | am still hungry
THEN | can have ice cream.

IF it's the weekend OR | am on annual leave THEN I’ll
go to the park.

Input A Input B AND OR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1




Boolean Logic

input A

logical

function

input B



Boolean Logic

logical OR
logical AND ogica
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XOR Puzzle!

Input A Input B XOR
0 0 0
0 1 1
1 0 1
1 1 0

logical XOR
(0,1)0 \' Oz,;}

™

N
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XOR Solution!

logical XOR

@1,1}

w Uge more than one node!



Key Points

blems can't be solved with justa single

1. Some pro
|assifier.

simple linear ©

se multiple nodes working together to

2. Youcanu
y of these problems.

solve man




Brains in Nature

e

terminals




Brains in Nature

brain 0.4 grams 11,000 neurons

nature's braing can eat, G& navigate, &‘Bh’r,
communicate, Pla& A .

« and +he3're resiient

302 neurons

& =N

37 billion neurons

(humans 20 billion)

https://en.wikipedia.org/wiki/List of animals_by number_of neurons
https://faculty.washington.edu/chudler/facts.html



https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html
https://faculty.washington.edu/chudler/facts.html
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Brains in Nature

output

.

>
threshold

step function

input

output

sigmoid function

Iojt&ﬁc Lunction
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Artificial Neuron

Sum inputs

X =
a+b+e i

9

ﬁ threshold ~ |

sigmoid

function

y(x)

——5 output y



Artificial Neural Network .. finally!

layer 1 layer 2 layer 3

pCiv iy ch
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neurons connections

inputs







Where Does The Learning Happen?

inputs

— O:f_ﬁéo " o BN
7 \
- OB

fink we‘Bh’r?

sigmoid £unction slope’



Key Points
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Feeding Signals Forward

layer 1 layer 2

- Qom0 -

nputs outputs

L _/m\“O

1.0




Feeding Signals Forward

sigmoid )
threshold
function |

y(x)




Feeding Signals Forward

layer 1 layer 2

w, ,=04
1.0 . O —> 07408
% /

Inputs outputs

- O e
w,,=0.8

2.5




Matrix Multiplication

x=(input_1*w, )+ (input 2 *w, )

x=(input_ 1 *w_ )+ (input 2 *w,,)



Matrix Multiplication

weights ‘mcom‘m& signals
W, W, input_1 (input 1 * w, )+ (input 2 * w, )
W, W,, input_2 (input_2 * w, )+ (input 2 *w, )

Wl =X

dot proo\uc’r



Key Points

|lations can be

dforward calcu
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Network Error




Network Error
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Internal Error

hidden,1

eoutput,z



Internal Error

input hidden ouput
layer layer layer
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Matrices Again!

wll W12. 63_
ervor, ... = L
W:Z.i W:z?. 62
ervor = w' > ervror

hidden hidden_output output



Key Points

se the error to guide how we

1. Remember we u
_link weights.

refine a model's parameter
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at the output node
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Yes, But How Do We Actually Update The Weights?

Qaamagghhh I



Perfect is the Enemy of Good

landscage e a compﬁca'teo\ di€ticult mathematical function ..
w with all Kinds of lumps, bumes, kinks w




Gradient Descent

Y = (x-1+1 g = (x-1y+1

next steps .
positive
slope

negative
slope

> =

smaler Srachen’r “ 3ou‘re closer to the
bottom . take smaller steps?



Key Points

vershooting by

the chance of o
ient gets shallower.

9. You can avoid
steps if the grad

taking smaller

isa difficult function

3. The error of @ neural network |
i descent

of the link weights .-
will help -




Climbing Down the Network Error Landscape

/\ neural network

Ervor

7 X
%

network link weights

v

i

we need to £ind this arao\ien’r



Error Gradient

E = (desired - actual)?
/

achool level calculus Cchain rule)

b

dE/dw. =-¢e .0 .(4d-0).0
] J J !

&

\

previous node

A Senﬂe infro to calcuus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html



http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html
http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

Updating the Weights

mMove w} in the opposite direction to

+heslope
oE
new wy = old R
awjk

rerember that Ieam‘ma rate
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Python Class and Functions

Neural Network
Class

Initialise Train Query

r T I

set size, initial weights do the leaming query for answers



Python has Cool Tools

matrix maths

ey

sy
matelotiib
notebook



http://www.numpy.org
http://www.numpy.org
http://www.scipy.org/scipylib/index.html
http://www.scipy.org/scipylib/index.html
http://matplotlib.org
http://matplotlib.org
https://www.continuum.io/why-anaconda
https://www.continuum.io/why-anaconda

Function - Initialise

# initialise the neural network

def __init_ (self, inputnodes, hiddennodes, outputnodes, learningrate):
# set number of nodes in each 1input, hidden, output Llayer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes

# Link weight matrices, wih and who

# weights 1inside the arrays are w_1i_j, where Link is from node i to node j in the next Layer
# wll w21

# wl2 w22 etc

self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.onodes, -90.5), (self.onodes, self.hnodes))

# Learning rate
self.1lr = learningrate

# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)

pass

. , random initial we‘tﬁh’fs




Function - Query

combined we‘gshfed sif,nals nto hidden
B\jQ\‘

then S‘Brno'\o\ applied

# query the neural network
def query(self, inputs_list):
# convert inputs List to 2d array
inputs = numpy.array(inputs_list, ndmin=2).T

# calculate signals into hidden Layer

hidden_inputs = numpy.dot(self.wih, inputs)

# calculate the signals emerging from hidden Layer
hidden outputs = self.activation function(hidden_inputs)

# calculate signals into final output Layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output Layer

final outputs = self.activation function(final_ inputs)

return final outputs

Oumpydot sirilar for output layer




Function - Train

# train the neural network
def train(self, inputs_list, targets_list):
# convert 1inputs Llist to 2d array same feed Lorward as before
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T

# calculate signals into hidden Layer

hidden_inputs = numpy.dot(self.wih, inputs)

# calculate the signals emerging from hidden Layer
hidden outputs = self.activation function(hidden_inputs)

# calculate signals into final output Layer om-eu* Bﬁe\‘ errors
final_inputs = numpy.dot(self.who, hidden_outputs)

# calculate the signals emerging from final output Layer

final outputs = self.activation function(final_ inputs) hidden Eﬁfu'ewvors
# output Layer error is the (target - actual) ! :’

output_errors = targets - final_outputs

# hidden Layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)

# update the weights for the Links between the hidden and output Layers
self.who += self.lr * numpy.dot((output_errors * final outputs * (1.0 - final outputs)), numpy.
transpose(hidden_outputs))

# update the weights for the Links between the input and hidden Layers
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.

transpose(inputs)) 0§fl~__
update we’Bh'rs

pass
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Handwritten Numbers Challenge
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MNIST Datasets

In [8]):

In [9]):

Out[9]:

In [10]:

out[10]:

MOIST dataset:
60,000 training data examples

{0,000 test data examples

data file = open{"mnist dataset/mnist train 100.csv", 'r")
data_list = data file.readlines()
data_file.close()

len{data_list)

100

data_ list[0]

's,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,
0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,25
3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,
90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11
,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,
253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,13
5,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"


http://pjreddie.com/projects/mnist-in-csv/
http://pjreddie.com/projects/mnist-in-csv/

MNIST Datasets

In [8): data file = open("mnist_dataset/mnist_train 100.csv", 'r')
data_list = data file.readlines()
data_file.close()

In [9]: len(data_list)

Out[9]: 100

gutrioyy °‘'s,o0.,¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,040,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

¥v,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,186,18,18,126,136,175,26,166,255,247,127,0,

0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,25

3,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0

EB‘;&L' ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,
9¢0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139, 253,190, 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,9,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45, 186,253, 253,150,27,0,0,0,0,0,0,0, 1Y eixels
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249, 64, 0,0 ©
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46, 130,183, 253,253, 207, 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39, 148,229, 253, values

253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,13
5,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"

In [32]: all values = data list[0].split(',")
image_array = numpy.asfarray(all_values[1l:]).reshape((28,28))
matplotlib.pyplot.imshow(image array, cmap='Greys', interpolation='None')

Out[32]: <matplotlib.image.AxesImage at 0x108818cc0>
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Output Layer Values

olu;tp Yt fabel example “s5” example “0” example “q”’
yer

@ o 0.00 oas 0.02
@ 1 0.00 0.00 0.00
@ 2 o.o1 o0.01 o.o1
@ 3 0.00 0.01 0.01
@ 4 o0.01 0.02 0.40
@ s - oaa 0.00 0.01
@ 6 0.00 0.00 o.o1
@ 7 0.00 0.00 0.00
@ g 0.02 0.00 o.01
@ q o0.01 0.02 036



Experiments
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More Experiments
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Thoughts



Peek Inside The Mind Of a Neural Network?

normal forward query

-

.
Y
neural

network

reverse back query

neural
network




Peek Inside The Mind Of a Neural Network?

this i=n't done ver
often




Thanks!
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Finding Out More

MAKE YOUR

makeyourownneuralnetwork.b|OgSQOt.co.uk O W N
NEURAL NETWORK

d ithu b.com/makeyourownneuralnetwork

www.dMaZON.co.uk/dp/BO1EER4Z4G

twitter.com/myoneuralnet

A gentle journey through the mathematics of
neural networks, and making your own
using the Python computer language.

slides goo.ql/JKsb62 TARIQ RASHID



http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
http://goo.gl/JKsb62
http://goo.gl/JKsb62
http://goo.gl/JKsb62

Raspberry Pi Zero

't all works on & ?aspbem:, Pi 2ero
w And it oniy costes Fu/ 451




