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Background



Start With Two Questions
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locate people in this photo add these numbers



AI is Huge!



Google’s and Go



Ideas



Simple Predicting Machine



Simple Predicting Machine



Kilometres to Miles

try a model -  this one is linear

random starting parameter



Kilometres to Miles

not great



Kilometres to Miles

better



Kilometres to Miles

worse !



Kilometres to Miles

best yet !



Key Points

1. Don’t know how something works exactly? Try a 

model with adjustable parameters.

2. Use the error to refine the parameters.



Garden Bugs



Classifying Bugs



Classifying Bugs



Classifying Bugs



Classifying Bugs



Key Points

1. Classifying things is kinda like predicting things.



Learning from Data

Example Width Length Bug

1 3.0 1.0 ladybird

2 1.0 3.0 caterpillar



Learning from Data



Learning from Data

not a good separator



Learning from Data

shift the line up
just above the training data point



Learning from Data



How Do We Update The Parameter?

error = target - actual

E = (A + ΔA)x - Ax

ΔA = E / x



Hang On!

Oh no!
each update ignores
previous examples



Calm Down the Learning

ΔA = L · (E / x)

learning rate



Calm Down the Learning

learning rate = 0.5



Key Points

1. Moderating your learning is good - ensures you 

learn from all your data, and reduces impact of 

outliers or noisy training data.



Boolean Logic

Input A Input B AND OR

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

IF I have eaten my vegetables AND I am still hungry 
THEN I can have ice cream.

IF it’s the weekend OR I am on annual leave THEN I’ll 
go to the park.



Boolean Logic



Boolean Logic



XOR Puzzle!

Input A Input B XOR

0 0 0

0 1 1

1 0 1

1 1 0



XOR Solution!

… Use more than one node!



Key Points

1. Some problems can’t be solved with just a single 

simple linear classifier.

2. You can use multiple nodes working together to 

solve many of these problems.



Brains in Nature



https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html

Brains in Nature

brain 0.4 grams 11,000 neurons

302 neurons

37 billion neurons

(humans 20 billion)

nature’s brains can eat, fly, navigate, fight, 
communicate, play, learn …

.. and they’re resilient

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://faculty.washington.edu/chudler/facts.html
https://faculty.washington.edu/chudler/facts.html


Brains in Nature



Brains in Nature

logistic function

y = 1 / (1 + e-x)



Brains in Nature



Artificial Neuron



Artificial Neural Network .. finally!



Pause.

...



Where Does The Learning Happen?

sigmoid function slope?link weight?



Key Points

1. Natural brains can do sophisticated things, and 

are incredibly resilient to damage and imperfect 

signals .. unlike traditional computing.

2. Trying to copy biological brains partly inspired 

artificial neural networks.

3. Link weights are the adjustable parameter - it’s 

where the learning happens.



Feeding Signals Forward



Feeding Signals Forward



Feeding Signals Forward



Matrix Multiplication



Matrix Multiplication

W·I = X

dot product

weights incoming signals



Key Points

1. The many feedforward calculations can be 

expressed concisely as matrix multiplication, no 

matter what shape the network.

2. Some programming languages can do matrix 

multiplication really efficiently and quickly.



Network Error



Network Error



Internal Error



Internal Error



Matrices Again!



Key Points

1. Remember we use the error to guide how we 

refine a model’s parameter - link weights.

2. The error at the output nodes is easy - the 

difference between the desired and actual 

outputs.

3. The error at internal nodes isn’t obvious. A 

heuristic approach is to split it in proportion to 

the link weights.

4. … and back propagating the error can be 

expressed as a matrix multiplication too!



Yes, But How Do We Actually Update The Weights?

Aaarrrggghhh !!



Perfect is the Enemy of Good

landscape is a complicated difficult mathematical function .. 
… with all kinds of lumps, bumps, kinks … 



Gradient Descent

smaller gradient .. you’re closer to the 
bottom … take smaller steps?



Key Points

1. Gradient descent is a practical way of finding the 

minimum of difficult functions.

2. You can avoid the chance of overshooting by 

taking smaller steps if the gradient gets shallower.

3. The error of a neural network is a difficult function 

of the link weights … so maybe gradient descent 

will help ...



Climbing Down the Network Error Landscape

We need to find this gradient



Error Gradient

A gentle intro to calculus

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html

E = (desired - actual)2

dE/dwij = - ej . oj . (1 - oj) . oi

school level calculus (chain rule)

previous node

http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html
http://makeyourownneuralnetwork.blogspot.co.uk/2016/01/a-gentle-introduction-to-calculus.html


Updating the Weights

remember that learning rate

move wjk in the opposite direction to 
the slope



DIY



Python Class and Functions

Neural Network
Class

Initialise Train Query

set size, initial weights do the learning query for answers



Python has Cool Tools

numpy
scipy

matplotlib
notebook

matrix maths

http://www.numpy.org
http://www.numpy.org
http://www.scipy.org/scipylib/index.html
http://www.scipy.org/scipylib/index.html
http://matplotlib.org
http://matplotlib.org
https://www.continuum.io/why-anaconda
https://www.continuum.io/why-anaconda


Function - Initialise

    # initialise the neural network

    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):

        # set number of nodes in each input, hidden, output layer

        self.inodes = inputnodes

        self.hnodes = hiddennodes

        self.onodes = outputnodes

        

        # link weight matrices, wih and who

        # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer

        # w11 w21

        # w12 w22 etc 

        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))

        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))

        # learning rate

        self.lr = learningrate

        

        # activation function is the sigmoid function

        self.activation_function = lambda x: scipy.special.expit(x)

        

        pass

random initial weights
numpy.random.normal()



Function - Query

combined weighted signals into hidden 
layer

    # query the neural network

    def query(self, inputs_list):

        # convert inputs list to 2d array

        inputs = numpy.array(inputs_list, ndmin=2).T

        

        # calculate signals into hidden layer

        hidden_inputs = numpy.dot(self.wih, inputs)

        # calculate the signals emerging from hidden layer

        hidden_outputs = self.activation_function(hidden_inputs)

        

        # calculate signals into final output layer

        final_inputs = numpy.dot(self.who, hidden_outputs)

        # calculate the signals emerging from final output layer

        final_outputs = self.activation_function(final_inputs)

        

        return final_outputs

then sigmoid applied

similar for output layernumpy.dot()



Function - Train

   # train the neural network

    def train(self, inputs_list, targets_list):

        # convert inputs list to 2d array

        inputs = numpy.array(inputs_list, ndmin=2).T

        targets = numpy.array(targets_list, ndmin=2).T

        

        # calculate signals into hidden layer

        hidden_inputs = numpy.dot(self.wih, inputs)

        # calculate the signals emerging from hidden layer

        hidden_outputs = self.activation_function(hidden_inputs)

        

        # calculate signals into final output layer

        final_inputs = numpy.dot(self.who, hidden_outputs)

        # calculate the signals emerging from final output layer

        final_outputs = self.activation_function(final_inputs)

        

        # output layer error is the (target - actual)

        output_errors = targets - final_outputs

        # hidden layer error is the output_errors, split by weights, recombined at hidden nodes

        hidden_errors = numpy.dot(self.who.T, output_errors) 

        

        # update the weights for the links between the hidden and output layers

        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.

transpose(hidden_outputs))

        

        # update the weights for the links between the input and hidden layers

        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.

transpose(inputs))

        

        pass

output layer errors

hidden layer errors

update weights

same feed forward as before



Handwriting



Handwritten Numbers Challenge



MNIST Datasets

MNIST dataset:

60,000 training data examples

10,000 test data examples

http://pjreddie.com/projects/mnist-in-csv/
http://pjreddie.com/projects/mnist-in-csv/


MNIST Datasets

label

784 pixels
values

28 by 28 pixel image



Output Layer Values



Experiments

96% is very good!

we’ve only used simple ideas 
and code

random processes
do go wonky!



More Experiments

98% is amazing!



Thoughts



Peek Inside The Mind Of a Neural Network?



Peek Inside The Mind Of a Neural Network?

this isn’t done very 
often



Thanks!

live demo!



Finding Out More

makeyourownneuralnetwork.blogspot.co.uk

github.com/makeyourownneuralnetwork

www.amazon.co.uk/dp/B01EER4Z4G

twitter.com/myoneuralnet

slides goo.gl/JKsb62

http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
http://makeyourownneuralnetwork.blogspot.co.uk
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
https://github.com/makeyourownneuralnetwork
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
http://www.amazon.co.uk/dp/B01EER4Z4G
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
https://twitter.com/myoneuralnet
http://goo.gl/JKsb62
http://goo.gl/JKsb62
http://goo.gl/JKsb62


Raspberry Pi Zero

It all works on a Raspberry Pi Zero
 … and it only costs £4 / $5 !!


