
Deep Learning

Europython 2016 - Bilbao

G. French
University of East Anglia

Image montages from http://www.image-net.org

Focus:

Mainly image processing

This talk is more about the principles
and the maths than code

Got to fit this into 1 hour!

What we’ll cover

Theano
What it is and how it works

What is a neural network?
The basic model; the multi-layer perceptron

Convolutional networks
Neural networks for computer vision

Lasagne
The Lasagne neural network library

Notes for building neural networks
A few tips on building and training neural networks

OxfordNet / VGG and transfer learning
Using a convolutional network trained by the VGG group at
Oxford University and re-purposing it for your needs

Talk materials

Github Repo (originally for PyData
London):

https://github.com/Britefury/deep-learning-tutorial-pydata2016

The notebooks are viewable on Github

Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning

Amazon AMI (Use GPU machine)

AMI ID: ami-e0048af7

AMI Name:

Britefury deep learning - Ubuntu-14.04 Anaconda2-
4.0.0 Cuda-7.5 cuDNN-5 Theano-0.8 Lasagne Fuel

ImageNet

Image classification dataset

~1,000,000 images
~1,000 classes

Ground truths prepared manually
through Amazon Mechanical Turk

ImageNet Top-5 challenge:

You score if ground truth class is one
your top 5 predictions

ImageNet in 2012

Best approaches used hand-crafted
features (SIFT, HOGs, Fisher vectors, etc)

+ classifier

Top-5 error rate: ~25%

Then the game changed.

Krizhevsky, Sutskever and Hinton;
ImageNet Classification with Deep

Convolutional Neural networks
[Krizhevsky12]

Top-5 error rate of ~15%

In the last few years, more modern
networks have achieved better results

still [Simonyan14, He15]

Top-5 error rates of ~5-7%

I hope this talk will give you an idea of
how!

Theano

Neural network software comes in two
flavours:

Neural network toolkits

Expression compilers

Neural network toolkit

Specify structure of neural network in
terms of layers

Expression compilers

Lower level
Describe the mathematical expressions

behind the layers
More powerful and flexible

Theano

An expression compiler

Write NumPy style expressions

Compiles to either C (CPU) or CUDA
(nVidia GPU)

Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning

There is much more to Theano

For more information:

http://deeplearning.net/tutorial
http://deeplearning.net/software/theano

There are others

Tensorflow – developed by Google – is
gaining popularity fast

What is a neural network?

Multiple layers

Data propagates through layers

Transformed by each layer

Neural network image classifier

Inputs Outputs

𝑃 𝑐𝑎𝑡 = 0.003
𝑃 𝑑𝑜𝑔 = 0.002
𝑃 𝑐𝑎𝑟 = 0.005
𝑃 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 = 0.9

Class
probabilities

Hidden Hidden

Neural network

Input
layer

Hidden
layer 0

Hidden
layer 1

Output
layer

⋯

Inputs Outputs

⋯

Single layer of a neural network

𝑓(𝑥)

Input
vector

Weighted
connections Bias

Activation
function /

non-linearity

Layer
activation

𝑥 = input (M-element vector)
𝑦 = output (N-element vector)
𝑊 = weights parameter (NxM matrix)
𝑏 = bias parameter (N-element vector)
𝑓 = non-linearity (a.k.a. activation function);
normally ReLU but can be tanh or sigmoid

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

In a nutshell:

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

Repeat for each layer

Input
vector

𝑓(𝑊𝑥 + 𝑏)

Hidden
layer 0

activation

𝑓(𝑊𝑥 + 𝑏)

Hidden
layer 1

activation

𝑓(𝑊𝑥 + 𝑏)

Final layer
activation
(output)

𝑓(𝑊𝑥 + 𝑏)

⋯

In mathematical notation:

𝑦; = 𝑓(𝑊;𝑥 + 𝑏;)
𝑦< = 𝑓 𝑊<𝑦; + 𝑏<

⋯
𝑦= = 𝑓(𝑊=𝑦=>< + 𝑏=)

As a classifier

Input
vector

Hidden
layer 0

activation

Final layer
activation

with softmax
non-linearity

⋯

Image
pixels

𝑃 𝑐𝑎𝑡 = 0.003
𝑃 𝑑𝑜𝑔 = 0.002
𝑃 𝑐𝑎𝑟 = 0.005
𝑃 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 = 0.9

Class
probabilities

Summary; a neural network is:

Built from layers, each of which is:

a matrix multiplication,
then add bias,

then apply non-linearity.

Training a neural network

Learn values for parameters; 𝑊 and 𝑏
(for each layer)

Use back-propagation

Initialise weights randomly (more on
this later)

Initialise biases to 0

For each example 𝑥?@ABC from training set

evaluate network prediction 𝑦D@EF given the
training input; 𝑥 = 𝑥?@ABC

Measure cost 𝑐 (error); difference between
𝑦D@EF and ground truth output 𝑦?@ABC

Classification
(which of these categories best describes

this?)

Final layer: softmax as non-linearity 𝑓;
output vector of class probabilities

Cost: negative-log-likelihood / categorical
cross-entropy

Regression
(quantify something, real-valued output)

Final layer: no non-linearity / identity
as 𝑓

Cost: Sum of squared differences

Reduce cost 𝑐 (also known as loss) using
gradient descent

Compute the derivative (gradient) of
cost w.r.t. parameters (all 𝑊 and 𝑏)

Theano performs symbolic
differentiation for you!

dCdW = theano.grad(cost, W)

(other toolkits – such as Torch and
Tensorflow – can also do this)

Update parameters:

𝑊;
G = 𝑊; − 𝛾

FJ
FKL

𝑏;G = 𝑏; − 𝛾
FJ
FML

γ = learning rate

Randomly split the training set into
mini-batches of ~100 samples.

Train on a mini-batch in a single step.
The mini-batch cost is the mean of the
costs of the samples in the mini-batch.

Training on mini-batches means that
~100 samples are processed in parallel –
very good for running GPUs that do lots

of operations in parallel

Training on all examples in the training
set is called an epoch

Run multiple epochs (often 200-300)

Summary; train a neural network:

Take mini-batch of training samples
Evaluate (run/execute) the network

Measure the average error/cost across mini-
batch

Use gradient descent to modify parameters
to reduce cost

REPEAT ABOVE UNTIL DONE

Multi-layer perceptron

Simplest network architecture

Nothing we haven’t seen so far

Uses only fully-connected / dense layers

Dense layer: each unit is connected too all
units in previous layer

(Obligatory) MNIST example:
2 hidden layers, both 256 units

after 300 iterations over training set:
1.83% validation error

Input Hidden

784
(28x28
images)

256

Hidden Output

256 10

MNIST is quite a special case

Digits nicely centred within image

Scaled to approx. same size

The fully connected networks so far have a
weakness:

No translation invariance; learned features are
position dependent

For more general imagery:
requires a training set large enough to

see all features in all possible
positions…

Requires network with enough units to
represent this…

Convolutional networks

Convolution

Slide a convolution kernel over an image

Multiply image pixels by kernel pixels
and sum

Convolution

Convolutions are often used for feature
detection

A brief detour…

Gabor filters

∗

Back on track to…

Convolutional networks

Recap: FC (fully-connected) layer

𝑓(𝑥)

Input
vector

Weighted
connections Bias

Activation
function

(non-linearity)

Layer
activation

Convolutional layer

Each unit only connected to units
in its neighbourhood

Convolutional layer

Weights are shared

Red weights
have same
value

As do
greens…

And
yellows

The values of the weights form a
convolution kernel

For practical computer vision, more an
one kernel must be used to extract a

variety of features

Convolutional layer

Different
weight-kernels:

Output is image
with multiple
channels

Note

Each kernel connects to pixels in ALL
channels in previous layer

Still

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

As convolution can be expressed as
multiplication by weight matrix

Down-sampling

In typical networks for computer vision,
we need to shrink the resolution after a

layer, by some constant factor

Use max-pooling or striding

Down-sampling: max-pooling ‘layer’
[Ciresan12]

Take maximum value from each 2 x 2
pooling region (𝑝 x 𝑝) in the general case

Down-samples image by factor 𝑝
Operates on channels independently

Down-sampling: striding

Can also down-sample using strided
convolution; generate output for 1 in

every 𝑛 pixels

Faster, can work as well as max-pooling

Example:

A Simplified LeNet [LeCun95] for MNIST
digits

Simplified LeNet for MNIST digits

28

28

24

24

Input

Output

1 20

Conv:
20 5x5
kernels

Maxpool
2x2 12

8

8

20 50

4

4

50

Conv:
50 5x5
kernels Maxpool

2x2

25610

Fully
connected

(flatten and)
fully
connected

12

after 300 iterations over training set:
99.21% validation accuracy

Model Error

FC64 2.85%

FC256--FC256 1.83%

20C5--MP2--50C5--MP2--FC256 0.79%

What about the learned kernels?

Image taken from paper [Krizhevsky12]
(ImageNet dataset, not MNIST)

Gabor filters

Image taken from [Zeiler14]

Image taken from [Zeiler14]

Lasagne

Specifying your network as
mathematical expressions is powerful

but low-level

Lasagne is a neural network library built
on Theano

Makes building networks with Theano
much easier

Provides API for:

constructing layers of a network

getting Theano expressions
representing output, loss, etc.

Lasagne is quite a thin layer on top of
Theano, so understanding Theano is

helpful

On the plus side, implementing custom
layers, loss functions, etc is quite

doable.

Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning

Notes for building and training
neural networks

Neural network architecture
(OxfordNet / VGG style)

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Early part

Blocks consisting
of:

A few convolutional
layers, often 3x3

kernels
- followed by -

Down-sampling;
max-pooling or

striding

64C3 = 3x3 conv, 64 filters
MP2 = max-pooling, 2x2

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Notation:

64C3
convolutional

layer with 64 3x3
filters

MP2
max-pooling, 2x2

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Note

after down-
sampling, double

the number of
convolutional

filters

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Later part:

After blocks of
convolutional and

down-sampling
layers:

Fully-connected
(a.k.a. dense)

layers

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Notation:

FC256
fully-connected
layer with 256

channels

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Overall

Convolutional
layers detect

feature in various
positions

throughout the
image

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Overall

Fully-connected /
dense layers use
features detected
by convolutional
layers to produce

output

Could also look at architectures
developed by others, e.g. Inception by

Google, or ResNets by Micrsoft for
inspiration

Batch normalization

Batch normalization [Ioffe15] is
recommended in most cases

Necessary for deeper networks (> 8
layers)

Speeds up training; cost drops faster
per-epoch, although epochs take longer

(~2x in my experience)

Can also reach lower error rates

Layers can magnify or shrink
magnitudes of values. Multiple layers

can result in exponential
increase/decrease.

Batch normalisation maintains constant
scale throughout network

Insert into convolutional and fully-
connected layers

after matrix multiplication/convolution,
before the non-linearity

Lasagne batch normalization inserts
itself into a layer before the non-

linearity, so its nice and easy to use:

lyr = lasagne.layers.batch_norm(lyr)

DropOut

Normally necessary for training (turned
off at predict/test time)

Reduces over-fitting

Over-fitting is a well-known problem in
machine learning, affects neural networks

particularly

A model over-fits when it is very good at
correctly predicting samples in training set
but fails to generalise to samples outside it

DropOut [Hinton12]

During training, randomly choose units to
‘drop out’ by setting their output to 0, with

probability 𝑃, usually around 0.5

(compensate by multiplying values by
<

<>Q
)

During test/predict:

Run as normal (DropOut turned off)

Normally applied after later, fully
connected layers

lyr = lasagne.layers.DenseLayer(lyr, num_units=256)
lyr = lasagne.layers.DropoutLayer(lyr, p=0.5)

Dropout OFF

Input
layer

Hidden
layer 0

Output
layer

Dropout ON (1)

Input
layer

Hidden
layer 0

Output
layer

Dropout ON (2)

Input
layer

Hidden
layer 0

Output
layer

Turning on a different subset of units
for each sample:

causes units to learn more robust
features that cannot rely on the

presence of other specific features to
cover for flaws

Dataset augmentation

Reduce over-fitting by enlarging training
set

Artificially modify existing training
samples to make new ones

For images:

Apply transformations such as move,
scale, rotate, reflect, etc.

Data standardisation

Neural networks train more effectively
when training data has:

zero-mean
unit variance

Standardise input data

In case of regression, standardise
output data too (don’t forget to invert

the standardisation of network
predictions!)

Standardisation

Extract samples into an array

In case of images, extract all pixels from all
sampls, keeping R, G & B channels separate

Compute distribution and standardise

Either:

Zero the mean and scale std-dev to 1,
per channel (RGB for images)

𝑥G =
𝑥 − 𝜇 𝑥
𝜎 𝑥

When training goes wrong and
what to look for

Loss becomes NaN

(ensure you track the loss after each
epoch so you can watch for this!)

Classification error rate equivalent of
random guess (its not learning)

Learns to predict constant value;
optimises constant value for best loss

A constant value is a local minimum
that the network won’t get out of

(neural networks ‘cheat’ like crazy!)

Neural networks (most) often DON’T
learn what you want or expect them to

Local minima will be the bane of your
existence

Designing a computer vision
pipeline

Simple problems may be solved with
just a neural network

Not sufficient for more complex
problems

(neural networks aren’t a silver bullet;
don’t believe the hype)

Theoretically possible to use a single
network for a complex problem

if you have enough training data
(often an impractical amount)

For more complex problems, the
problem should be broken down

Example

Identifying right whales, by Felix Lau
2nd place in Kaggle competition

http://felixlaumon.github.io/2015/01/0
8/kaggle-right-whale.html

Identifying right whales, by Felix Lau

The first naïve solution – training a
classifier to identify individuals – did

not work well

Region-based saliency map revealed that
the network had ‘locked on’ to features

in the ocean shape rather than the
whales

Lau’s solution:

Train a localiser neural network to
locate the whale in the image

Lau’s solution:

Train a keypoint finder neural network
to locate two keypoints on the whale’s

head to identify its orientation

Lau’s solution:

Train classifier neural network on
oriented and cropped whale head

images

OxfordNet / VGG and transfer
learning

Using a pre-trained network

Use Oxford VGG-19; the 19-layer model

1000-class image classifier, trained on
ImageNet

Can download CC licensed weights from
(in Caffe format):

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

GitHub repo contains code that
downloads a Python version form:

http://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg19.pkl

VGG models are simple but effective

Consist of:

3x3 convolutions
2x2 max pooling
fully connected

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

5 256C3

6 256C3

7 256C3

8 256C3

MP2

Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC4096 (dropout 50%)

18 FC4096 (dropout 50%)

19 FC1000 soft-max

Exercise / Demo

Classifying an image with VGG-19

Transfer learning (network re-use)

Training a neural network is notoriously
data-hungry

Preparing training data with ground
truths is expensive and time consuming

What if we don’t have enough training
data to get good results?

The ImageNet dataset is huge; millions
of images with ground truths

What if we could somehow use it to
help us with a different task?

Good news:

we can!

Transfer learning

Re-use part (often most) of a pre-trained
network for a new task

Example; can re-use part of VGG-19 net
for:

Classifying images with classes that
weren’t part of the original ImageNet

dataset

Example; can re-use part of VGG-19 net for:

Localisation (find location of object in
image)

Segmentation (find exact boundary around
object in image)

Transfer learning: how to

Take existing network such as VGG-19

Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

5 256C3

6 256C3

7 256C3

8 256C3

MP2

Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC4096 (drop 50%)

18 FC4096 (drop 50%)

19 FC1000 soft-max

Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

Remove last layers
e.g. the fully-

connected ones

(just 17,18,19;
those in the left
box are hidden

here for brevity!)

Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC1024 (drop 50%)

18 FC21 soft-max

Build new
randomly initialise
layers to replace

them

(the number of
layers created their

size is only for
illustration here)

Transfer learning: training

Train the network with your training
data, only learning parameters for the

new layers

Transfer learning: fine-tuning

After learning parameters for the new
layers, fine-tune by learning parameters

for the whole network to get better
accuracy

Result

Nice shiny network with good
performance that was trained with

much less of our training data

Some cool work in the field that
might be of interest

Visualizing and understanding
convolutional networks [Zeiler14]

Visualisations of responses of layers to
images

Visualizing and understanding convolutional
networks [Zeiler14]

Image taken from [Zeiler14]

Visualizing and understanding convolutional
networks [Zeiler14]

Image taken from [Zeiler14]

Deep Neural Networks are Easily Fooled:
High Confidence Predictions in

Recognizable Images [Nguyen15]

Generate images that are
unrecognizable to human eyes but are

recognized by the network

Deep Neural Networks are Easily Fooled: High
Confidence Predictions in Recognizable Images

[Nguyen15]

Image taken from [Nguyen15]

Learning to generate chairs with
convolutional neural networks

[Dosovitskiy15]

Network in reverse; orientation, design
colour, etc parameters as input, rendered

images as output training images

Learning to generate chairs with convolutional
neural networks [Dosovitskiy15]

Image taken from [Dosovitskiy15]

A Neural Algorithm of Artistic Style
[Gatys15]

Take an OxfordNet model [Simonyan14] and
extract texture features from one of the

convolutional layers, given a target style /
painting as input

Use gradient descent to iterate photo – not
weights – so that its texture features match

those of the target image.

A Neural Algorithm of Artistic Style
[Gatys15]

Image taken from [Gatys15]

Unsupervised representation Learning with
Deep Convolutional Generative Adversarial

Nets [Radford 15]

Train two networks; one given random
parameters to generate an image, another to
discriminate between a generated image and

one from the training set

Generative Adversarial Nets [Radford15]

Images of bedrooms generated using
neural net

Image taken from [Radford15]

Generative Adversarial Nets [Radford15]

Image taken from [Radford15]

Hope you’ve found it helpful!

Thank you!

References

[Dosovitskiy15] Dosovitskiy,
Springenberg and Box; Learning to
generate chairs with convolutional
neural networks, arXiv preprint, 2015

[Gatys15] Gatys, Echer, Bethge; A Neural
Algorithm of Artistic Style, arXiv:
1508.06576, 2015

[He15a] He, Zhang, Ren and Sun;
Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet
Classification, arXiv 2015

[He15b] He, Kaiming, et al. "Deep
Residual Learning for Image
Recognition." arXiv preprint
arXiv:1512.03385 (2015).

[Hinton12] G.E. Hinton, N. Srivastava, A.
Krizhevsky, I. Sutskever and R. R.
Salakhutdinov; Improving neural
networks by preventing co-adaptation of
feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[Ioffe15] Ioffe, S.; Szegedy C.. (2015).
“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift". ICML 2015,
arXiv:1502.03167

[Jones87] Jones, J.P.; Palmer, L.A. (1987).
"An evaluation of the two-dimensional
gabor filter model of simple receptive
fields in cat striate cortex". J.
Neurophysiol 58 (6): 1233–1258

[Lin13] Lin, Min, Qiang Chen, and
Shuicheng Yan. "Network in
network." arXiv preprint
arXiv:1312.4400 (2013).

[Nesterov83] Nesterov, Y. A method of
solving a convex programming problem
with convergence rate O(1/sqr(k)). Soviet
Mathematics Doklady, 27:372–376
(1983).

[Radford15] Radford, Metz, Chintala;
Unsupervised Representation Learning
with Deep Convolutional Generative
Adversarial Networks, arXiv:1511.06434,
2015

[Sutskever13] Sutskever, Ilya, et al. On
the importance of initialization and
momentum in deep
learning. Proceedings of the 30th
international conference on machine
learning (ICML-13). 2013.

[Simonyan14] K. Simonyan and
Zisserman; Very deep convolutional
networks for large-scale image
recognition, arXiv:1409.1556, 2014

[Wang14] Wang, Dan, and Yi Shang. "A
new active labeling method for deep
learning."Neural Networks (IJCNN), 2014
International Joint Conference on. IEEE,
2014.

[Zeiler14] Zeiler and Fergus; Visualizing
and understanding convolutional
networks, Computer Vision - ECCV 2014

