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Focus:

Mainly image processing



This talk is more about the principles 
and the maths than code

Got to fit this into 1 hour!



What we’ll cover



Theano
What it is and how it works

What is a neural network?
The basic model; the multi-layer perceptron

Convolutional networks
Neural networks for computer vision 



Lasagne
The Lasagne neural network library

Notes for building neural networks
A few tips on building and training neural networks

OxfordNet / VGG and transfer learning
Using a convolutional network trained by the VGG group at 
Oxford University and re-purposing it for your needs



Talk materials



Github Repo (originally for PyData
London):

https://github.com/Britefury/deep-learning-tutorial-pydata2016

The notebooks are viewable on Github



Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning



Amazon AMI (Use GPU machine)

AMI ID: ami-e0048af7

AMI Name:

Britefury deep learning - Ubuntu-14.04 Anaconda2-
4.0.0 Cuda-7.5 cuDNN-5 Theano-0.8 Lasagne Fuel



ImageNet



Image classification dataset



~1,000,000 images
~1,000 classes

Ground truths prepared manually 
through Amazon Mechanical Turk



ImageNet Top-5 challenge:

You score if ground truth class is one 
your top 5 predictions



ImageNet in 2012

Best approaches used hand-crafted 
features (SIFT, HOGs, Fisher vectors, etc) 

+ classifier

Top-5 error rate: ~25%



Then the game changed.



Krizhevsky, Sutskever and Hinton; 
ImageNet Classification with Deep 

Convolutional Neural networks
[Krizhevsky12]

Top-5 error rate of ~15%



In the last few years, more modern 
networks have achieved better results 

still [Simonyan14, He15]

Top-5 error rates of ~5-7%



I hope this talk will give you an idea of 
how!



Theano



Neural network software comes in two 
flavours:

Neural network toolkits

Expression compilers



Neural network toolkit

Specify structure of neural network in 
terms of layers



Expression compilers

Lower level
Describe the mathematical expressions 

behind the layers
More powerful and flexible



Theano

An expression compiler



Write NumPy style expressions

Compiles to either C (CPU) or CUDA 
(nVidia GPU)



Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning



There is much more to Theano

For more information:

http://deeplearning.net/tutorial
http://deeplearning.net/software/theano



There are others

Tensorflow – developed by Google – is 
gaining popularity fast



What is a neural network?



Multiple layers

Data propagates through layers

Transformed by each layer



Neural network image classifier

Inputs Outputs

𝑃 𝑐𝑎𝑡 = 0.003
𝑃 𝑑𝑜𝑔 = 0.002
𝑃 𝑐𝑎𝑟 = 0.005
𝑃 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 = 0.9

Class 
probabilities

Hidden Hidden



Neural network

Input 
layer

Hidden 
layer 0

Hidden 
layer 1

Output 
layer

⋯

Inputs Outputs

⋯



Single layer of a neural network

𝑓(𝑥)

Input 
vector

Weighted 
connections Bias

Activation 
function / 

non-linearity

Layer 
activation



𝑥 = input (M-element vector)
𝑦 = output (N-element vector)
𝑊 = weights parameter (NxM matrix)
𝑏 = bias parameter (N-element vector)
𝑓 = non-linearity (a.k.a. activation function); 
normally ReLU but can be tanh or sigmoid

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



In a nutshell:

𝑦 = 𝑓(𝑊𝑥 + 𝑏)



Repeat for each layer

Input 
vector

𝑓(𝑊𝑥 + 𝑏)

Hidden 
layer 0 

activation

𝑓(𝑊𝑥 + 𝑏)

Hidden 
layer 1 

activation

𝑓(𝑊𝑥 + 𝑏)

Final layer 
activation 
(output)

𝑓(𝑊𝑥 + 𝑏)

⋯



In mathematical notation:

𝑦; = 𝑓(𝑊;𝑥 + 𝑏;)
𝑦< = 𝑓 𝑊<𝑦; + 𝑏<

⋯
𝑦= = 𝑓(𝑊=𝑦=>< + 𝑏=)



As a classifier

Input 
vector

Hidden 
layer 0 

activation

Final layer 
activation 

with softmax
non-linearity

⋯

Image 
pixels

𝑃 𝑐𝑎𝑡 = 0.003
𝑃 𝑑𝑜𝑔 = 0.002
𝑃 𝑐𝑎𝑟 = 0.005
𝑃 𝑏𝑎𝑛𝑎𝑛𝑎𝑠 = 0.9

Class 
probabilities



Summary; a neural network is:

Built from layers, each of which is:

a matrix multiplication,
then add bias,

then apply non-linearity.



Training a neural network



Learn values for parameters; 𝑊 and 𝑏
(for each layer)

Use back-propagation



Initialise weights randomly (more on 
this later)

Initialise biases to 0



For each example 𝑥?@ABC from training set

evaluate network prediction 𝑦D@EF given the 
training input; 𝑥 = 𝑥?@ABC

Measure cost 𝑐 (error); difference between 
𝑦D@EF and ground truth output 𝑦?@ABC



Classification
(which of these categories best describes 

this?)

Final layer: softmax as non-linearity 𝑓; 
output vector of class probabilities

Cost: negative-log-likelihood / categorical 
cross-entropy



Regression
(quantify something, real-valued output)

Final layer: no non-linearity / identity 
as 𝑓

Cost: Sum of squared differences



Reduce cost 𝑐 (also known as loss) using 
gradient descent



Compute the derivative (gradient) of 
cost w.r.t. parameters (all 𝑊 and 𝑏)



Theano performs symbolic 
differentiation for you!

dCdW = theano.grad(cost, W)

(other toolkits – such as Torch and 
Tensorflow – can also do this)



Update parameters:

𝑊;
G = 𝑊; − 𝛾

FJ
FKL

𝑏;G = 𝑏; − 𝛾
FJ
FML

γ = learning rate



Randomly split the training set into 
mini-batches of ~100 samples.

Train on a mini-batch in a single step. 
The mini-batch cost is the mean of the 
costs of the samples in the mini-batch.



Training on mini-batches means that 
~100 samples are processed in parallel –
very good for running GPUs that do lots 

of operations in parallel



Training on all examples in the training 
set is called an epoch

Run multiple epochs (often 200-300)



Summary; train a neural network:

Take mini-batch of training samples
Evaluate (run/execute) the network

Measure the average error/cost across mini-
batch

Use gradient descent to modify parameters 
to reduce cost

REPEAT ABOVE UNTIL DONE



Multi-layer perceptron



Simplest network architecture

Nothing we haven’t seen so far

Uses only fully-connected / dense layers



Dense layer: each unit is connected too all 
units in previous layer



(Obligatory) MNIST example:
2 hidden layers, both 256 units

after 300 iterations over training set:
1.83% validation error

Input Hidden

784 
(28x28 
images)

256

Hidden Output

256 10



MNIST is quite a special case

Digits nicely centred within image

Scaled to approx. same size



The fully connected networks so far have a 
weakness:

No translation invariance; learned features are 
position dependent



For more general imagery:
requires a training set large enough to 

see all features in all possible 
positions…

Requires network with enough units to 
represent this…



Convolutional networks



Convolution

Slide a convolution kernel over an image

Multiply image pixels by kernel pixels 
and sum



Convolution

Convolutions are often used for feature 
detection



A brief detour…



Gabor filters

∗



Back on track to…

Convolutional networks



Recap: FC (fully-connected) layer

𝑓(𝑥)

Input 
vector

Weighted 
connections Bias

Activation 
function 

(non-linearity)

Layer 
activation



Convolutional layer

Each unit only connected to units 
in its neighbourhood



Convolutional layer

Weights are shared

Red weights 
have same 
value

As do 
greens…

And 
yellows



The values of the weights form a 
convolution kernel

For practical computer vision, more an 
one kernel must be used to extract a 

variety of features



Convolutional layer

Different 
weight-kernels:

Output is image 
with multiple 
channels



Note

Each kernel connects to pixels in ALL 
channels in previous layer



Still

𝑦 = 𝑓(𝑊𝑥 + 𝑏)

As convolution can be expressed as 
multiplication by weight matrix



Down-sampling

In typical networks for computer vision, 
we need to shrink the resolution after a 

layer, by some constant factor

Use max-pooling or striding



Down-sampling: max-pooling ‘layer’
[Ciresan12]

Take maximum value from each 2 x 2 
pooling region (𝑝 x 𝑝) in the general case

Down-samples image by factor 𝑝
Operates on channels independently



Down-sampling: striding

Can also down-sample using strided
convolution; generate output for 1 in 

every 𝑛 pixels

Faster, can work as well as max-pooling



Example:

A Simplified LeNet [LeCun95] for MNIST 
digits



Simplified LeNet for MNIST digits

28

28

24

24

Input

Output

1 20

Conv:
20 5x5 
kernels

Maxpool
2x2 12

8

8

20 50

4

4

50

Conv:
50 5x5 
kernels Maxpool

2x2

25610

Fully 
connected

(flatten and) 
fully 
connected

12



after 300 iterations over training set:
99.21% validation accuracy

Model Error

FC64 2.85%

FC256--FC256 1.83%

20C5--MP2--50C5--MP2--FC256 0.79%



What about the learned kernels?

Image taken from paper [Krizhevsky12] 
(ImageNet dataset, not MNIST)

Gabor filters



Image taken from [Zeiler14]



Image taken from [Zeiler14]



Lasagne



Specifying your network as 
mathematical expressions is powerful 

but low-level



Lasagne is a neural network library built 
on Theano

Makes building networks with Theano
much easier



Provides API for:

constructing layers of a network

getting Theano expressions 
representing output, loss, etc.



Lasagne is quite a thin layer on top of 
Theano, so understanding Theano is 

helpful

On the plus side, implementing custom 
layers, loss functions, etc is quite 

doable.



Intro to Theano and Lasagne slides:

https://speakerdeck.com/britefury

https://speakerdeck.com/britefury/intro-to-theano-and-lasagne-for-deep-learning



Notes for building and training 
neural networks



Neural network architecture 
(OxfordNet / VGG style)



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Early part

Blocks consisting 
of:

A few convolutional 
layers, often 3x3 

kernels
- followed by -

Down-sampling; 
max-pooling or 

striding

64C3 = 3x3 conv, 64 filters
MP2 = max-pooling, 2x2



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Notation:

64C3
convolutional 

layer with 64 3x3
filters

MP2
max-pooling, 2x2



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

Note

after down-
sampling, double 

the number of 
convolutional 

filters



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Later part:

After blocks of 
convolutional and 

down-sampling 
layers:

Fully-connected 
(a.k.a. dense) 

layers



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Notation:

FC256
fully-connected 
layer with 256

channels



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Overall

Convolutional 
layers detect 

feature in various 
positions 

throughout the 
image



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

FC256

FC10

Overall

Fully-connected / 
dense layers use 
features detected 
by convolutional 
layers to produce 

output



Could also look at architectures 
developed by others, e.g. Inception by 

Google, or ResNets by Micrsoft for 
inspiration



Batch normalization



Batch normalization [Ioffe15] is 
recommended in most cases

Necessary for deeper networks (> 8 
layers)



Speeds up training; cost drops faster 
per-epoch, although epochs take longer 

(~2x in my experience)

Can also reach lower error rates



Layers can magnify or shrink 
magnitudes of values. Multiple layers 

can result in exponential 
increase/decrease.

Batch normalisation maintains constant 
scale throughout network



Insert into convolutional and fully-
connected layers

after matrix multiplication/convolution, 
before the non-linearity



Lasagne batch normalization inserts 
itself into a layer before the non-

linearity, so its nice and easy to use:

lyr = lasagne.layers.batch_norm(lyr)



DropOut



Normally necessary for training (turned 
off at predict/test time)

Reduces over-fitting



Over-fitting is a well-known problem in 
machine learning, affects neural networks 

particularly

A model over-fits when it is very good at 
correctly predicting samples in training set 
but fails to generalise to samples outside it



DropOut [Hinton12]

During training, randomly choose units to 
‘drop out’ by setting their output to 0, with 

probability 𝑃, usually around 0.5

(compensate by multiplying values by 
<

<>Q
)



During test/predict:

Run as normal (DropOut turned off)



Normally applied after later, fully 
connected layers

lyr = lasagne.layers.DenseLayer(lyr, num_units=256) 
lyr = lasagne.layers.DropoutLayer(lyr, p=0.5)



Dropout OFF

Input 
layer

Hidden 
layer 0

Output 
layer



Dropout ON (1)

Input 
layer

Hidden 
layer 0

Output 
layer



Dropout ON (2)

Input 
layer

Hidden 
layer 0

Output 
layer



Turning on a different subset of units 
for each sample:

causes units to learn more robust 
features that cannot rely on the 

presence of other specific features to 
cover for flaws



Dataset augmentation



Reduce over-fitting by enlarging training 
set

Artificially modify existing training 
samples to make new ones



For images:

Apply transformations such as move, 
scale, rotate, reflect, etc.



Data standardisation



Neural networks train more effectively 
when training data has:

zero-mean
unit variance



Standardise input data

In case of regression, standardise
output data too (don’t forget to invert 

the standardisation of network 
predictions!)



Standardisation

Extract samples into an array

In case of images, extract all pixels from all 
sampls, keeping R, G & B channels separate

Compute distribution and standardise



Either:

Zero the mean and scale std-dev to 1, 
per channel (RGB for images)

𝑥G =
𝑥 − 𝜇 𝑥
𝜎 𝑥



When training goes wrong and 
what to look for



Loss becomes NaN

(ensure you track the loss after each 
epoch so you can watch for this!)



Classification error rate equivalent of 
random guess (its not learning)



Learns to predict constant value; 
optimises constant value for best loss

A constant value is a local minimum 
that the network won’t get out of 

(neural networks ‘cheat’ like crazy!)



Neural networks (most) often DON’T
learn what you want or expect them to



Local minima will be the bane of your 
existence



Designing a computer vision 
pipeline



Simple problems may be solved with 
just a neural network



Not sufficient for more complex 
problems

(neural networks aren’t a silver bullet; 
don’t believe the hype)



Theoretically possible to use a single 
network for a complex problem

if you have enough training data
(often an impractical amount)



For more complex problems, the 
problem should be broken down



Example

Identifying right whales, by Felix Lau
2nd place in Kaggle competition

http://felixlaumon.github.io/2015/01/0
8/kaggle-right-whale.html



Identifying right whales, by Felix Lau

The first naïve solution – training a 
classifier to identify individuals – did 

not work well



Region-based saliency map revealed that 
the network had ‘locked on’ to features 

in the ocean shape rather than the 
whales



Lau’s solution:

Train a localiser neural network to 
locate the whale in the image



Lau’s solution:

Train a keypoint finder neural network 
to locate two keypoints on the whale’s 

head to identify its orientation



Lau’s solution:

Train classifier neural network on 
oriented and cropped whale head 

images



OxfordNet / VGG and transfer 
learning



Using a pre-trained network



Use Oxford VGG-19; the 19-layer model

1000-class image classifier, trained on 
ImageNet



Can download CC licensed weights from 
(in Caffe format):

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

GitHub repo contains code that 
downloads a Python version form:

http://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg19.pkl



VGG models are simple but effective

Consist of:

3x3 convolutions
2x2 max pooling
fully connected



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

5 256C3

6 256C3

7 256C3

8 256C3

MP2

# Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC4096 (dropout 50%)

18 FC4096 (dropout 50%)

19 FC1000 soft-max



Exercise / Demo

Classifying an image with VGG-19



Transfer learning (network re-use)



Training a neural network is notoriously 
data-hungry

Preparing training data with ground 
truths  is expensive and time consuming



What if we don’t have enough training 
data to get good results?



The ImageNet dataset is huge; millions 
of images with ground truths

What if we could somehow use it to 
help us with a different task?



Good news:

we can!



Transfer learning

Re-use part (often most) of a pre-trained 
network for a new task



Example; can re-use part of VGG-19 net 
for:

Classifying images with classes that 
weren’t part of the original ImageNet 

dataset



Example; can re-use part of VGG-19 net for:

Localisation (find location of object in 
image)

Segmentation (find exact boundary around 
object in image)



Transfer learning: how to

Take existing network such as VGG-19



# Layer

Input: 3 x 224 x 224
(RGB image, zero-mean)

1 64C3

2 64C3

MP2

3 128C3

4 128C3

MP2

5 256C3

6 256C3

7 256C3

8 256C3

MP2

# Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC4096 (drop 50%)

18 FC4096 (drop 50%)

19 FC1000 soft-max



# Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

Remove last layers 
e.g. the fully-

connected ones

(just 17,18,19; 
those in the left 
box are hidden 

here for brevity!)



# Layer

9 512C3

10 512C3

11 512C3

12 512C3

MP2

13 512C3

14 512C3

15 512C3

16 512C3

MP2

17 FC1024 (drop 50%)

18 FC21 soft-max

Build new 
randomly initialise
layers to replace 

them

(the number of 
layers created their 

size is only for 
illustration here)



Transfer learning: training

Train the network with your training 
data, only learning parameters for the 

new layers



Transfer learning: fine-tuning

After learning parameters for the new
layers, fine-tune by learning parameters 

for the whole network to get better 
accuracy



Result

Nice shiny network with good 
performance that was trained with 

much less of our training data



Some cool work in the field that 
might be of interest



Visualizing and understanding 
convolutional networks [Zeiler14]

Visualisations of responses of layers to 
images



Visualizing and understanding convolutional 
networks [Zeiler14]

Image taken from [Zeiler14]



Visualizing and understanding convolutional 
networks [Zeiler14]

Image taken from [Zeiler14]



Deep Neural Networks are Easily Fooled: 
High Confidence Predictions in 

Recognizable Images [Nguyen15]

Generate images that are 
unrecognizable to human eyes but are 

recognized by the network



Deep Neural Networks are Easily Fooled: High 
Confidence Predictions in Recognizable Images 

[Nguyen15]

Image taken from [Nguyen15]



Learning to generate chairs with 
convolutional neural networks 

[Dosovitskiy15]

Network in reverse; orientation, design 
colour, etc parameters as input, rendered 

images as output training images



Learning to generate chairs with convolutional 
neural networks [Dosovitskiy15]

Image taken from [Dosovitskiy15]



A Neural Algorithm of Artistic Style 
[Gatys15]

Take an OxfordNet model [Simonyan14] and 
extract texture features from one of the 

convolutional layers, given a target style / 
painting as input

Use gradient descent to iterate photo – not 
weights – so that its texture features match 

those of the target image.



A Neural Algorithm of Artistic Style 
[Gatys15]

Image taken from [Gatys15]



Unsupervised representation Learning with 
Deep Convolutional Generative Adversarial 

Nets [Radford 15]

Train two networks; one given random 
parameters to generate an image, another to 
discriminate between a generated image and 

one from the training set



Generative Adversarial Nets [Radford15]

Images of bedrooms generated using 
neural net

Image taken from [Radford15]



Generative Adversarial Nets [Radford15]

Image taken from [Radford15]



Hope you’ve found it helpful!



Thank you!
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