
Asynchronous Network Requests in Web Applications

Lauris Jullien
lauris@yelp.com/@laucia_julljen

1

mailto:lauris@yelp.com
mailto:lauris@yelp.com

Yelp’s Mission
Connecting people with great

local businesses.

2

Yelp Stats
As of Q1 2016

90M 3270%102M

3

What is this talk about?

• Why would you want to do that?
• Why can it be complicated?
• What’s a deployment server (uWSGI)
• How To: Code Examples and ideas

4

What is the problem we are trying to solve?
High level view

Public
Service
Public

Service

5

What is the problem we are trying to solve?
With a SOA

Session
Service

Internal SOA

Business
Service

User
Service

Public
Service

6

What is the problem we are trying to solve?
Async !

Session
Service

Internal SOA

Business
Service

User
Service

Public
Service

7

ThreadPool Executor

import concurrent.futures
import urllib.request

URLS = [...]

def load_url(url, timeout):
 with urllib.request.urlopen(url, timeout=timeout) as conn:
 return conn.read()

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
 future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
 for future in concurrent.futures.as_completed(future_to_url):
 url = future_to_url[future]
 data = future.result()

concurrent.future
Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors
on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O
instead of CPU work and the number of workers should be higher than the number of workers for
ProcessPoolExecutor.

https://docs.python.org/dev/library/concurrent.futures.html

8

https://docs.python.org/dev/library/concurrent.futures.html
https://docs.python.org/dev/library/concurrent.futures.html

Deployment

Tornado/Twisted/… app ?

WSGI app ? (django, pyramid, flask ...)

How do I do that efficiently now?

Running a ...

9

WSGI Deployment: uwsgi

Why uwsgi ?
● Widely used and well tested
● Very configurable: almost every combinations

is possible (threads, process, events loop,
greenlets, ….)

● Pre-forked (fork abusing) model

10

Deployment Server/Gateway
The pre-forked model

11

Deployment Server/Gateway
Serving requests to your app

Here may
be reverse

proxies
(nginx)

http request

12

Simple Synchronous App
import time
import requests

def application(env, start_response):
 start_response("200 OK", [("Content-Type","text/html")])
 start_time = time.time()
 calls = [long_network_call(i/8) for i in range(1,5)]
 end_time = time.time()

 return [
 b"This call lasted %0.3f seconds with synchronous calls.\n"
 % (end_time - start_time)
]

def long_network_call(duration):
 requests.get('http://localhost:7001/?duration={}'.format(duration))

13

Simple Synchronous App

uwsgi_basic.ini

[uwsgi]

http = :5000

wsgi-file=app_sync.py

master = 1

configs

uwsgi_process.ini

[uwsgi]

http = :5001

wsgi-file=app_sync.py

master = 1

processes = 4

uwsgi_thread.ini

[uwsgi]

http = :5002

wsgi-file=app_sync.py

master = 1

threads = 4

uwsgi_mix.ini

[uwsgi]

http = :5003

wsgi-file=app_sync.py

master = 1

processes = 2

threads = 2

14

Simple Synchronous App

curl localhost:5000
 This call lasted 1.282 seconds with synchronous calls.

uwsgi_basic (1 process)
python3 hammer.py --port 5000 --nb_requests 20
 We did 20 requests in 25.425450086593628

uwsgi_process (4 processes)
python3 hammer.py --port 5001 --nb_requests 20
 We did 20 requests in 6.418

uwsgi_thread (4 threads)
python3 hammer.py --port 5002 --nb_requests 20
 We did 20 requests in 6.479

uwsgi_mix (2 process with 2 threads each)
python3 hammer.py --port 5003 --nb_requests 20
 We did 20 requests in 6.415

Results!

15

Simple Asynchronous App
import asyncio
...
from aiohttp import ClientSession

def application(env, start_response):
 # ...
 loop = asyncio.get_event_loop()
 futures = [
 asyncio.ensure_future(long_network_call(i/8))
 for i in range(1,5)
]
 loop.run_until_complete(asyncio.wait(futures))
 # ...

async def long_network_call(duration):
 async with ClientSession() as session:
 async with session.get('http://localhost:7001/?duration={}'.format(duration)) as response:
 return await response.read()

uwsgi.ini

[uwsgi]
http = :5100
wsgi-file=app_asyncio.py
master = 1
processes = 2

16

Simple Asynchronous App
Event loop

Twisted Network Programming Essentials -
2nd edition - Jessica McKellar and Abe
Fettig - O’Reilly 2013

17

Simple Asynchronous App

curl localhost:5100

 This lasted 0.518 seconds with async calls using asyncio

python3 hammer.py --port 5100 --nb_requests 20

 We did 20 requests in 5.010

Performance and Cavehats

18

Simple Asynchronous App

Making uwsgi threads option work requires changing the get_loop()

Performance and Cavehats

def get_loop():
 try:
 loop = asyncio.get_event_loop()
 except RuntimeError as e:
 loop = asyncio.new_event_loop()
 asyncio.set_event_loop(loop)
 finally:
 return loop

Running with --threads 2

19

Simple Asynchronous App

aiohttp spawns extra threads for dns resolution (which is kind of what we
don’t want)

Performance and Cavehats

app_sync worker htop for
comparison

app_asyncio worker htop

20

Gevent App
import time
from functools import partial

import gevent
import requests
from gevent import monkey

Monkey-patch.
monkey.patch_all(thread=False, select=False)

def application(env, start_response):
 # ...
 jobs = [
 gevent.spawn(partial(long_network_call, i/8))
 for i in range(1,5)
]
 gevent.joinall(jobs)
 # ...

def long_network_call(duration):
 requests.get('http://localhost:7001/?duration={}'.format(duration))

uwsgi.ini

[uwsgi]
http = :5200
gevent = 50
wsgi-file = app_gevent.py
master = 1
processes = 2

21

Gevent App

curl localhost:5200

 This lasted 0.539 seconds with async calls using gevent

python3 hammer.py --port 5200 --nb_requests 50

 We did 100 requests in 1.255

python3 hammer.py --port 5200 --nb_requests 100

 We did 100 requests in 1.373

python3 hammer.py --port 5200 --nb_requests 200

 We did 200 requests in 2.546

Perf

22

Gevent
DNS resolution ... again

strace -p 17024
This is doing dns resolution!

app_gevent worker htop: we can see 4 threads, when we expect 1

23

Offloading in a separate loop thread
import atexit
import functools
from concurrent.futures import Future

from tornado.httpclient import AsyncHTTPClient
from tornado.ioloop import IOLoop

_loop = IOLoop()

def _event_loop():
 _loop.make_current()
 _loop.start()

def setup():
 t = threading.Thread(
 target=_event_loop,
 name="TornadoReactor",
)
 t.start()
 def clean_up():
 _loop.stop()
 _loop.close()
 atexit.register(clean_up)
setup()

def long_network_call(duration):
 http_client = AsyncHTTPClient(_loop)

 # this uses the threadsafe loop.add_callback internally
 fetch_future = http_client.fetch(
 'http://localhost:7001/?duration={}'.format(duration)
)

 result_future = Future()
 def callback(f):
 try:
 result_future.set_result(f.result())
 except BaseException as e:
 result_future.set_exception(e)

 fetch_future.add_done_callback(callback)

 return result_future

24

Offloading in a separate loop thread

def application(env, start_response):
 start_response("200 OK", [("Content-Type","text/html")])
 start_time = time.time()

 futures = [
 long_network_call(i/8) for i in range(1,5)
]
 # Let's do something heavy like ... waiting
 time.sleep(1)

 for future in futures:
 future.result()

 end_time = time.time()

 return [
 b"This call lasted %0.3f seconds with offloaded asynchronous calls.\n" % (end_time - start_time)
]

uwsgi.ini

[uwsgi]
http = :5300
wsgi-file = app_tornado.py
master = 1
processes = 2
lazy-apps = 1

25

Offloading in a separate loop thread

curl localhost:5300

 This lasted 1.003 seconds with offloaded asynchronous calls.

python3 hammer.py --port 5300 --nb_requests 20

 We did 20 requests in 10.097

26

Offloading Event Loop Ready Made: Crochet

• Uses twisted event loop
• Actually allows to run much more in the

reactor than just network requests

• If you are after just the networking : Fido!
https://github.com/Yelp/fido

https://github.com/itamarst/crochet

27

https://github.com/Yelp/fido
https://github.com/Yelp/fido
https://github.com/itamarst/crochet
https://github.com/itamarst/crochet

Final notes

Use what fit your needs,
or what needs to fit

• Tradeoff between speed and concurrency
• Beware of DNS resolutions

All code used for this presentation is available https://github.com/laucia/europython_2016/
You should probably not use it in production

28

https://github.com/laucia/europython_2016/

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp
29

QUESTIONS?

30

