\
velp%s

Asynchronous Network Requests in Web Applications

ﬁ? g Iauris@yelfpa.légfn\;gllizgciajuIIjen
[-
- —— ;
—— S |

mailto:lauris@yelp.com
mailto:lauris@yelp.com

Yelp’s Mission
Connecting people with great
local businesses.

O0M

Yelp Stats

As of Q1 2016

102M

T
70%

=]
#lE

1

What is this talk about?

ny would you want to do that?

Ny can it be complicated?

nat's a deployment server (UWSGI)
ow To: Code Examples and ideas

===

What is the problem we are trying to solve?
High level view

Activity Feed

What is the problem we are trying to solve?

Activity Feed

clicked to call your busin
16 at 2:

-

e A Yelp wser from San Franci:

Tuesday, June 26, 2016 at 2:42 PM via Yelp

g

\C

With a SOA

Session
| Service |

Public Business
Service | Service

User
Internal SOA | Service §

What is the problem we are trying to solve?

Activity Feed

clicked to call your busin
016 at 2:

e A Yelp wser from San Franci:

Tuesday, June 26, 2016 at 2:4: i Yalp

13

Async !

Session
| Service |

Public Business
Service | Service

User
Internal SOA | Service §

ThreadPool Executor
concurrent.future

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors
on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap 1/0
instead of CPU work and the number of workers should be higher than the number of workers for
ProcessPoolExecutor.

import concurrent.futures
import urllib.request

URLS = [...]

def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
data = future.result()

https://docs.python.org/dev/library/concurrent.futures.html

https://docs.python.org/dev/library/concurrent.futures.html
https://docs.python.org/dev/library/concurrent.futures.html

Deployment
How do | do that efficiently now?

Running a ...

Tornado/Twisted/... app ?

[WSGI app ? (django, pyramid, flask ...)]

WSGI Deployment: uwsgi

Why uwsgi ?

Widely used and well tested

Very configurable: almost every combinations
is possible (threads, process, events loop,
greenlets,)

. Pre-forked (fork abusing) model

10

Deployment Server/Gateway
The pre-forked model

[Master J [Worker 1

11

Here may

proxies
(nginx)

[Worker }(
be reverse =

Deployment Server/Gateway
Serving requests to your app

[Master J [Worker 1(
http request (

[Worker 1<
C

12

Simple Synchronous App

import time
import requests

def

def

application(env, start_response):

start_response("200 OK", [("Content-Type","text/html")])
start_time = time.time()

calls = [long_network call(i/8) for i in range(1,5)]
end_time = time.time()

return [
b"This call lasted %0.3f seconds with synchronous calls.\n"
% (end_time - start_time)

]

long_network_call(duration):
requests.get('http://localhost:7001/?duration={}".format(duration))

13

uwsgi basic.ini
[uwsgi]

http = :5000
wsgi-file=app_sync.py

master = 1

Simple Synchronous App

uwsgi process.ini
[uwsgi]

http = :5001
wsgi-file=app_sync.py
master = 1

processes = 4

configs

uwsgi thread.ini
[uwsgi]

http = :5002
wsgi-file=app_sync.py
master = 1

threads = 4

uwsgi_mix.ini
[uwsgi]

http = :5003
wsgi-file=app_sync.py
master = 1

processes = 2

threads = 2

14

Simple Synchronous App

Results!

curl localhost:5000
This call lasted 1.282 seconds with synchronous calls.

uwsgi_basic (1 process)
python3 hammer.py --port 5000 --nb_requests 20
We did 20 requests in 25.425450086593628

uwsgi _process (4 processes)
python3 hammer.py --port 5001 --nb _requests 20

We did 20 requests in 6.418

uwsgi _thread (4 threads)
python3 hammer.py --port 5002 --nb _requests 20

We did 20 requests in 6.479

uwsgi_mix (2 process with 2 threads each)
python3 hammer.py --port 5003 --nb _requests 20

We did 20 requests in 6.415

15

Simple Asynchronous App

import asyncio
i 0oc
from aiohttp import ClientSession

def application(env, start_response):

il nnc

loop = asyncio.get_event_loop()

futures =
asyncio.ensure_future(long network call(i/8))
for i in range(1,5)

]

loop.run_until complete(asyncio.wait(futures))
...

async def long_network_call(duration):
async with ClientSession() as session:

[uwsgi]

http = :5100
wsgi-file=app_asyncio.py
master = 1

processes = 2

async with session.get('http://localhost:7001/?duration={}".format(duration)) as response:

return await response.read()

16

Twisted Network Programming Essentials -
2nd edition - Jessica McKellar and Abe
Fettig - O’Reilly 2013

Simple Asynchronous App
Event loop

Single- ;)
Time threaded Multi-threaded Event-driven
rFevw-.
AL
FvwHs
AL
Fevw™
e
ebscnesd Thread 1 Thread 2 Thread 3
VAVAVA'
VWA Task 2
A A A
Fvw s
 J YVvVY

Figure 2-1. Comparing single-threaded, multithreaded, and event-driven program flow

17

Simple Asynchronous App

Performance and Cavehats
curl localhost:5100

This lasted ©0.518 seconds with async calls using asyncio

python3 hammer.py --port 5100 --nb_requests 20
We did 20 requests in 5.010

18

Simple Asynchronous App

Performance and Cavehats

[pid: 16833|app: O|req: 2/1] 127.08.8.1 () {32 vars in 369 bytes} [Mon Jul 11 14:14:01 2016] GET / => generated © bytes in 128 ms
ecs (HTTP/1.1 208) 1 headers in 44 bytes (® switches on core 1)
Traceback (most recent call last):
File "app_asyncio.py"”, line 13, in application
loop = asyncio.get_event_loop()
File "/fusr/lib/python3.5/asynciofevents.py”, line 626, in get_event_loop
return get event loop policy().get _event loop()
File "/fusr/lib/python3.5/asynciofevents.py", line 572, in get_event_loop
% threading.current_thread().name)
RuntimeError: There is no current event leop in thread "b'uWSGIWorkeriCorei'".
[pid: 16833|app: O|req: 3/2] 127.8.8.1 () {32 vars in 369 bytes} [Mon Jul 11 14:14:01 2016] GET / => generated © bytes in 1 msec
s (HTTP/1.1 200) 1 headers in 44 bytes (0 switches on core 1)
pid: 16834 : thread_id: b'uWSGIWorker2Core®' : start network call with duration 8.5
File "app_asyncio.py", line 13, in application
loop = asyncio.get_event loop()
File "/fusr/lib/python3.5/asynciofevents.py", line 626, in get_event_loop
return get event loop policy().get_event loop()
File "/usr/lib/python3.5/asyncio/events.py", line 572, in get_event_loop
% threading.current_thread().name)
RuntimeError: There is no current event loop in thread "b'uWSGIWorker2Corel'".

Running with --threads 2

Making uwsgi threads option work requires changing the get_loop()

def get loop():
try:
loop = asyncio.get _event loop()
except RuntimeError as e:
loop = asyncio.new_event loop()
asyncio.set_event_loop(loop)
finally:
return loop

19

Simple Asynchronous App

Performance and Cavehats

aiohttp spawns extra threads for dns resolution (which is kind of what we
don’t want)

117, 222 2
NRRRENNURRNRNRARE 0.31 0.18
©2:58:25

app_asyncio worker htop

Jhome flauris/.local/binfuwsgi uwsgi.ini

N - app_sync worker htop for
comparison

20

Gevent App

import time
from functools import partial

import gevent
import requests

from gevent import monkey

Monkey-patch. [uwsgi]

monkey.patch_all(thread=False, select=False) [http = :5200]
gevent = 50

wsgi-tile = app_gevent.py
master = 1
processes = 2

def application(env, start_response):
...

jobs = [
gevent.spawn(partial(long network_call, i/8))
for i in range(1,5)

]

gevent.joinall(jobs)

...

def long network call(duration):
requests.get('http://localhost:7001/?duration={}".format(duration))

curl localhost:5200

This lasted ©.539 seconds with async calls using gevent

python3 hammer.py --port
We did 100 requests in

python3 hammer.py --port
We did 100 requests in

python3 hammer.py --port
We did 200 requests in

Gevent App
Perf

5200 --nb_requests 50
1.255

5200 --nb_requests 100
1.373

5200 --nb_requests 200
2.546

22

Gevent
DNS resolution ... again

117, 211 1
LEEEREEERTEEVEERL) 0.11 0.08
05:39:34

17007 lauris /home/lauris/.local/bin/uwsgi uwsgi.ini

17023 lauris
170621 lauris

app_gevent worker htop: we can see 4 threads, when we expect 1

futex(@x7fbeb5e008764, FUTEX WAIT_BITSET_PRIVATE|FUTEX_CLOCK REALTIME, 1419, {1468241261, 677450000}, ffffffff)
futex(@x7fbeb5e@87e@, FUTEX WAIT_PRIVATE, 2, NULL) = @
futex(®x7fbeb5e007ed, FUTEX_WAKE_PRIVATE, 1) = ©
stat("/etc/resolv.conf", {st mode=S IFREG|0644, st size=197, ...
open(" /etc/hosts", O RDONLY|O_CLOEXEC) =
fstat(66, {st mode=S IFREG|0644, st size=232, ...}) = 0
66, "127.0.0.1\tlocalhost\n127.0.1.1\tla"..., 4096) = 232

66, "", 4096) =0

66 -0 strace -p 17024
futex(@x7fbea®001190, FUTEX WAIT_BITSET_PRIVATE|FUTEX_CLOCK REALTIME, @, NULL, ffffffff) = @ 7~,7-) (1 . (1 I t' /
futex(@x7fbeb5e00764, FUTEX WAIT_BITSET_PRIVATE|FUTEX_CLOCK REALTIME, 1425, {1468241261, 691793000}, FFfffffff)
futex(@x7fbeb5e087e®, FUTEX WAIT_PRIVATE, 2, NULL) = @ IS1S ()1,757 ns resoiution:
futex(@x7fbeb5e@07ed, FUTEX_WAKE_PRIVATE, 1) = ©
stat("/etc/resolv.conf", {st_mode=S_IFREG|0644, st_size=197, ...

", D_RDONLY|D_CLOEXEC) = 66

"127.0.0.1\tlocalhost\n127.6.1.1\tla"..., 4096) = 232
" 4096) =0
=0

23

Offloading in a separate loop thread

import atexit
import functools
from concurrent.futures import Future

from tornado.httpclient import AsyncHTTPClient
from tornado.ioloop import IOLoop

_loop = IOLoop()

def _event loop():
_loop.make_current()
_loop.start()

def setup():

t = threading.Thread(
target=_event_loop,
name="TornadoReactor",

)

t.start()

def clean_up():
_loop.stop()
_loop.close()

atexit.register(clean_up)

setup()

def long_network_call(duration):

http_client = AsyncHTTPClient(loop)

this uses the threadsafe loop.add callback internally
fetch_future = http client.fetch(
"http://localhost:7001/?duration={}".format(duration)

)

result future = Future()
def callback(f):
try:
result future.set result(f.result())
except BaseException as e:
result_future.set_exception(e)

fetch_future.add_done_callback(callback)

return result future

24

Offloading in a separate loop thread

def application(env, start_response):
start_response("200 OK", [("Content-Type","text/html")])
start_time = time.time()

futures = [
long network_call(i/8) for i in range(1,5)

uwsgi.ini

] [uwsgi]
Let's do something heavy like ... waiting http = :5300
time.sleep(1) wsgi-file = app_tornado.py

master = 1

for future in futures:

processes
future.result()

lazy-apps

end time = time.time()

return [
b"This call lasted %@.3f seconds with offloaded asynchronous calls.\n" % (end_time -
]

= 2
=1

start_time)

25

Offloading in a separate loop thread

curl localhost:5300

This lasted 1.003 seconds with offloaded asynchronous calls.

python3 hammer.py --port 5300 --nb _requests 20
We did 20 requests in 10.097

[
[
[

17254 lauris 20 (0] 548 296 5 0.7 0.6 0:00.11

26

Offloading Event Loop Ready Made: Crochet
https://github.com/itamarst/crochet

. Uses twisted event loop
. Actually allows to run much more in the
reactor than just network requests

. If you are after just the networking : Fido!
https://github.com/Yelp/fido

27

https://github.com/Yelp/fido
https://github.com/Yelp/fido
https://github.com/itamarst/crochet
https://github.com/itamarst/crochet

Final notes

Use what fit your needs,
or what needs to fit

« Tradeoff between speed and concurrency
« Beware of DNS resolutions

All code used for this presentation is available https.//github.com/laucia/europython_2016/
You should probably not use it in production

28

https://github.com/laucia/europython_2016/

AN
velpt s
0 fb.com/YelpEngineers
Q @YelpEngineering
@ engineeringblog.yelp.com

@ github.com/yelp

29

‘N&ES

yelp'lt
UESTIONS?

@
(TR

E

@
m:

A

