
BUILD YOUR FIRST OPENSTACK
APPLICATION

WITH OPENSTACK PYTHONSDK

VICTORIA MARTINEZ DE LA
CRUZ

SOFTWARE ENGINEER AT RED HAT

CO-FOUNDER LINUXCHIX ARGENTINA

WHAT IS OPENSTACK?
BRIEF OVERVIEW

OPENSTACK OVERVIEW

IAAS... AND MORE!

+

RUNNING APPS ON OPENSTACK
HOW IT WAS... A FEW YEARS BACK

OSD GRACE HOPPER CELEBRATION 2014

OSD GRACE HOPPER CELEBRATION 2014
Leveraging OpenStack scalability and resiliency in times of
need and disaster
Defining a cloud-ready architecture for an standard
application
Deploying the application in no-time by just running an script

IN PREPARATION FOR OSD GHC 2014
Architecture the app to be cloud-ready → 2 webservers + 1 db +

1 load balancer

Webserver

Webserver

DB LB

IN PREPARATION FOR OSD GHC 2014
Talk with an OpenStack cloud using python-*client

OPENSTACK PYTHON NOVA CLIENT

List servers in Nova
from novaclient.v1_1 import client

conn = client.Client(user, password,
 project, auth_url)

from server in conn.servers.list():
 print(server.name)

OPENSTACK PYTHON GLANCE CLIENT

List images in Glance
from glanceclient.v2 import client

conn = client.Client(auth_url, token)

from image in conn.images.list():
 print(image["name"])

OPENSTACK PYTHON SWIFT CLIENT

List containers in Swift
from swiftclient import client

conn = client.Client(auth_url, user, key,
 tenant_name,
 auth_version)

header, containers = conn.getaccount()

from container in containers:
 print(container["name"])

OPENSTACK LIBRARIES & SDKS
COMMUNITY TOOLS FOR CLOUD DEVS

WHY?
There is no way to just talk to an OpenStack cloud

Lots of services. One lib per service, one ux per lib

Lots of libs * lots of ux == sad cloud dev

APACHE LIBCLOUD
Unified API
Talking to different clouds (lots of plugins!)
Third party

APACHE LIBCLOUD

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

import libcloud.security

libcloud.security.VERIFY_SSL_CERT = False

OpenStack = get_driver(Provider.OPENSTACK)

driver = OpenStack('your username', 'your password',
 ex_force_auth_url='https://nova-api.trystack.org:5443',
 ex_force_auth_version='2.0_password')

nodes = driver.list_nodes()

images = driver.list_images()
sizes = driver.list_sizes()
size = [s for s in sizes if s.ram == 512][0]
image = [i for i in images if i.name == 'natty-server-cloudimg-amd64'][0]

node = driver.create_node(name='test node', image=image, size=size)

OPENSTACK SHADE
Simplicity
OpenStack Infra subproject
Under development, it is expected to change

OPENSTACK SHADE
import shade

Initialize and turn on debug logging
shade.simple_logging(debug=True)

Initialize cloud
Cloud configs are read with os-client-config
cloud = shade.openstack_cloud(cloud='epcloud')

Upload an image to the cloud
image = cloud.create_image(
 'fedora24', filename='fedora24.qcow2', wait=True)

Find a flavor with at least 512M of RAM
flavor = cloud.get_flavor_by_ram(512)

Boot a server, wait for it to boot, and then do whatever is needed
to get a public ip for it.
cloud.create_server(
 'my-server', image=image, flavor=flavor, wait=True, auto_ip=True)

OPENSTACK PYTHONSDK
Complete set of libraries, tools, documentation and examples
Aimed at all types of users

Users of OpenStack clouds (probably YOU!)
Operators of OpenStack clouds
Developers of OpenStack projects

Install once, run anywhere

OPENSTACK PYTHONSDK
THE COMMUNITY PYTHONSDK FOR CLOUD

DEVS

PYTHON OPENSTACKSDK
Write Python automation scripts that create and manage

resources in your OpenStack cloud

$ pip install openstacksdk

PYTHON OPENSTACKSDK

Resource

Connection

Connection

Application developer consuming an
OpenStack cloud
Maintains your session, authentication,
transport, and profile

Resource

OpenStack developer requiring finer-grained
control

SOME SNIPPETS
Establishing a connection with the cloud

from openstack import connection

Connect
def create_connection():
 conn = connection.Connection(auth_url=AUTH_URL,
 project_name=TENANT_NAME,
 username=USER_NAME,
 password=USER_PASS)
 return conn

SOME SNIPPETS
Creating a server

from openstack import connection

def create_server(conn):
 print("Create Server:")
 image = conn.compute.find_image(IMAGE_NAME)
 flavor = conn.compute.find_flavor(FLAVOR_NAME)
 network = conn.network.find_network(NETWORK_NAME)
 keypair = create_keypair(conn)

 server = conn.compute.create_server(
 name=SERVER_NAME, image_id=image.id, flavor_id=flavor.id,
 key_name=keypair.name, user_data=CLOUD_INIT)

 server = conn.compute.wait_for_server(server)

SOME SNIPPETS
Creating a keypair

import os

from openstack import connection

def create_keypair(conn):
 keypair = conn.compute.find_keypair(KEYPAIR_NAME)

 if not keypair:
 print("Create Key Pair:")

 keypair = conn.compute.create_keypair(name=KEYPAIR_NAME)

 try:
 os.mkdir(SSH_DIR)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise e

 with open(PRIVATE_KEYPAIR_FILE, 'w') as f:
 f.write("%s" % keypair.private_key)

 os.chmod(PRIVATE_KEYPAIR_FILE, 0o400)

 return keypair

MAKING YOUR APP CLOUD-
READY

SOME GROUND RULES

CLOUD READY & CLOUD CENTRIC
Common classification

Cloud ready: Effectively deployed into either a public or
private cloud
Cloud centric: Built using different tools and runtimes than
traditional applications.

DYNAMIC APPLICATION TOPOLOGY
If the topology can change, it will change

Deploy your application to be as generic and stateless as
possible. This will allow to:

Selectively scale individual components
Simplify maintenance and reuse
Fault tolerance

E.g. Don't hardcore information about networking, delegate it
to the networking service

EPHEMERAL STORAGE
Don't assume the local file system is permanent

Use a remote storage for non-static data

Cache
Logs

E.g. You can use the block storage service volumes to store
data

STATELESS
Statefulness of any sort limits the scalability of an application

Remove or, if needed, store the session state in a HA store
external to your app server (cache or database)
E.g. You can use the databases service to spin up a DB
instance

STANDARDS
Use standards-based services and APIs for portability to cloud

environments

Avoid using obscure protocols
Don't rely on OS-specific features

AUTOMATION
Cloud apps need to be installed frequently and on-demand

Automate configuration setup
Minimize the dependencies required by the application
installation

THX! vkmc@redhat.com
vkmc at Twitter​
vkmc at irc.freenode.orgQ&A

OpenStack cloud native deployment for
application developers
D. Flanders
Thursday, 2pm at Room E
OpenStack Open Space
Wednesday, TBD

USEFUL RESOURCES
http://developer.openstack.org/firstapp-libcloud/
http://developer.openstack.org/sdks/python/
http://docs.openstack.org/user-guide/sdk_overview.html

