BUILD YOUR FIRST OPENSTACK
APPLICATION

WITH OPENSTACK PYTHONSDK

VICTORIA MARTINEZ DE LA
CRUZ

SOFTWARE ENGINEER AT RED HAT
CO-FOUNDER LINUXCHIX ARGENTINA

WHAT IS OPENSTACK?

BRIEF OVERVIEW

OPENSTACK OVERVIEW

Your Applications

A

D . s OPENSTACK
CLOUD OPERATING SYSTEM

OpenStack Dashboard ¢
E o
/ gt
Networking Storage
J/ l

OpenStack Shared Services

Standard Hardware

IAAS... AND MORE!

D T S T

SWIFT KEYSTONE NOVA NEUTRON CINDER GLANCE

Object Storage Identity Compute Networking Block Storage Image Service

HORIZON
Dashboard

TROVE

Database

ZAQAR

Messaging Service

BARBICAN

Key Management

CONGRESS

Governance

+

CEILOMETER

Telemetry

SAHARA
Elastic Map Reduce

MANILA

Shared Filesystems

MAGNUM

Containers

HEAT

Orchestration

IRONIC

Bare-Metal Provisioning

DESIGNATE
DNS Service

MURANO
Application Catalog

RUNNING APPS ON OPENSTACK

HOW IT WAS... AFEW YEARS BACK

OSD GRACE HOPPER CELEBRATION 2014

OSD GRACE HOPPER CELEBRATION 2014
e | everaging OpenStack scalability and resiliency in times of
need and disaster
e Defining a cloud-ready architecture for an standard
application
e Deploying the application in no-time by just running an script

\Ushahidi

IN PREPARATION FOR OSD GHC 2014

Architecture the app to be cloud-ready = 2 webservers + 1db +
1load balancer

IN PREPARATION FOR OSD GHC 2014
Talk with an OpenStack cloud using python-*client

OPENSTACK PYTHON NOVA CLIENT

from novaclient.vl 1 import client

conn = client.Client(user, password,

project, auth url)

from server in conn.servers.list():
print(server.name)

OPENSTACK PYTHON GLANCE CLIENT

from glanceclient.v2 import client

conn = client.Client(auth url, token)

from image in conn.images.list():
print (image["name"])

OPENSTACK PYTHON SWIFT CLIENT

from swiftclient import client

conn = client.Client(auth url, user, key,
tenant name,
auth version)

header, containers = conn.getaccount()

from container in containers:
print(container["name"])

OPENSTACK LIBRARIES & SDKS

COMMUNITY TOOLS FOR CLOUD DEVS

WHY?
There is no way to just talk to an OpenStack cloud

e | ots of services. One lib per service, one ux per lib
= | ots of libs * lots of ux == sad cloud dev

APACHE LIBCLOUD
e Unified API
e Talking to different clouds (lots of plugins!)
e Third party

APACHE LIBCLOUD

from libcloud.compute.types import Provider
from libcloud.compute.providers import get driver

import libcloud.security

libcloud.security.VERIFY SSL CERT = False

OpenStack = get driver(Provider.OPENSTACK)

driver = OpenStack('your username', 'your password',
ex force auth url='https://nova-api.trystack.org:5443"',
ex force auth version='2.0 password')

nodes = driver.list nodes|()

images = driver.list images()

sizes = driver.list sizes()

size = [s for s in sizes if s.ram == 512][0]

image = [1 for 1 in images if i.name == 'natty-server-cloudimg-amd64'][0]

node = driver.create node(name='test node', image=image, size=size)

OPENSTACK SHADE
e Simplicity
e OpenStack Infra subproject
e Under development, it is expected to change

OPENSTACK SHADE

import shade

simple logging(debug=True)

shade.openstack cloud(cloud='epcloud')

image = cloud.create image(
'fedora24’', filename='fedora24.qcow2', wait=True)

flavor = cloud.get flavor by ram(512)

cloud.create server(
'my-server', image=image, flavor=flavor, wait=True, auto ip=True)

OPENSTACK PYTHONSDK

e Complete set of libraries, tools, documentation and examples
e Aimed at all types of users

= Users of OpenStack clouds (probably YOU!)
= Operators of OpenStack clouds
= Developers of OpenStack projects

e |nstall once, run anywhere

OPENSTACK PYTHONSDK

THE COMMUNITY PYTHONSDK FOR CLOUD
DEVS

PYTHON OPENSTACKSDK

Write Python automation scripts that create and manage
resources in your OpenStack cloud

$ pip install openstacksdk

PYTHON OPENSTACKSDK

Connection

e Application developer consuming an
OpenStack cloud

e Maintains your session, authentication,
transport, and profile

Resource

e OpenStack developer requiring finer-grained
control

SOME SNIPPETS

Establishing a connection with the cloud

from openstack import connection

def create connection():
conn = connection.Connection(auth url=AUTH URL,

project name=TENANT NAME,
username=USER NAME,
password=USER _ PASS)

return conn

SOME SNIPPETS

Creating a server

from openstack import connection

def create server(conn):
print("Create Server:")
image = conn.compute.find image(IMAGE NAME)
flavor = conn.compute.find flavor (FLAVOR NAME)
network = conn.network.find network (NETWORK NAME)

keypair = create keypair(conn)

server = conn.compute.create_ server(
name=SERVER_NAME, image id=image.id, flavor id=flavor.id,
key name=keypair.name, user data=CLOUD INIT)

server = conn.compute.wait for server(server)

SOME SNIPPETS
Creating a keypair

import os
from openstack import connection

def create keypair(conn):
keypair = conn.compute.find keypair (KEYPAIR NAME)

if not keypair:
print("Create Key Pair:")

keypair = conn.compute.create keypair(name=KEYPAIR NAME)
try:

os.mkdir (SSH_DIR)
except OSError as e:

if e.errno != errno.EEXIST:
raise e

with open(PRIVATE KEYPAIR FILE, 'w') as f:
f.write("%s" % keypair.private key)

os.chmod (PRIVATE KEYPAIR FILE, 00400)

return keypair

MAKING YOUR APP CLOUD-
READY

SOME GROUND RULES

CLOUD READY & CLOUD CENTRIC

Common classification

e Cloud ready: Effectively deployed into either a public or
private cloud

e Cloud centric: Built using different tools and runtimes than
traditional applications.

DYNAMIC APPLICATION TOPOLOGY
If the topology can change, it will change

e Deploy your application to be as generic and stateless as
possible. This will allow to:
= Selectively scale individual components
= Simplify maintenance and reuse
= Fault tolerance
e E.g. Don't hardcore information about networking, delegate it
to the networking service

EPHEMERAL STORAGE
Don't assume the local file system is permanent

e Use aremote storage for non-static data

= Cache
= | 0gs

e [£.g. You can use the block storage service volumes to store
data

STATELESS
Statefulness of any sort limits the scalability of an application

e Remove or, if needed, store the session state in a HA store
external to your app server (cache or database)

e E.g. You can use the databases service to spin up a DB
instance

STANDARDS

Use standards-based services and APIs for portability to cloud
environments

e Avoid using obscure protocols
e Don't rely on OS-specific features

AUTOMATION
Cloud apps need to be installed frequently and on-demand

e Automate configuration setup

e Minimize the dependencies required by the application
installation

T H X ' vkmc@redhat.com
O vkmc at Twitter
Q & a vkmc at irc.freenode.org

OpenStack cloud native deployment for
application developers

D. Flanders

Thursday, 2pm at Room E

OpenStack Open Space

Wednesday, TBD

USEFUL RESOURCES
e hitp://developer.openstack.org/firstapp-libcloud/
e http://developer.openstack.org/sdks/python/
e hitp://docs.openstack.org/user-quide/sdk_overview.html

