
Clean code in Python
EuroPython
July 2016 - Bilbao, Spain

Mariano Anaya

/me

● Python developer
● Interests

○ Linux
○ Software development
○ Software Architecture / system design

 marianoanaya at gmail dot com/rmariano @rmarianoa

def

“You know you are working on clean code when each routine
you read turns out to be pretty much what you expected.

You can call it beautiful code when the code also makes it
look like the language was made for the problem.”

Ward Cunningham

In Python: magic methods → “Pythonic” code

Introduction / __init__

● What is “clean code”?
○ Does one thing well
○ Every f(x) does what you’d expect

● Why is it important?
○ Code quality => Software quality
○ Readability
○ Agile development
○ Code: blueprint

What is not clean code

● Complex, obfuscated code
● Duplicated code
● Code that is not intention revealing

...Technical Debt

Meaning

def elapse(year):
 days = 365
 if year % 4 == 0 or (year % 100 == 0 and year % 400 == 0):
 days += 1
 for day in range(1, days + 1):
 print("Day {} of {}".format(day, year))

Meaning and logic separation

def elapse(year):
 days = 365
 if year % 4 == 0 or (year % 100 == 0 and year % 400 == 0):
 days += 1
 for day in range(1, days + 1):
 print("Day {} of {}".format(day, year))

?

def elapse(year):
 days = 365
 if is_leap(year):
 days += 1
 ...

def is_leap(year):
 ...

Duplicated code

● Often caused by the lack of meaningful abstractions
● Unclear patterns usually drive to code duplication

Problems:

● Hard to maintain, change, adapt
● Error prone

DRY principle

Don’t Repeat Yourself!

● Avoid code duplication at all cost
● Proposed solution: decorators

Duplicated code: decorators

def decorator(original_function):
 def inner(*args, **kwargs):
 # modify original function, or add extra logic
 return original_function(*args, **kwargs)
 return inner

General idea: take a function and modify it, returning a new one with the
changed logic.

def update_db_indexes(cursor):
 commands = (
 """REINDEX DATABASE transactional""",
)
 try:
 for command in commands:
 cursor.execute(command)
 except Exception as e:
 logger.exception("Error in update_db_indexes: %s", e)
 return -1
 else:
 logger.info("update_db_indexes run successfully")
 return 0

def move_data_archives(cursor):
 commands = (
 """INSERT INTO archive_orders SELECT * from orders
 WHERE order_date < '2016-01-01' """,
 """DELETE from orders WHERE order_date < '2016-01-01'
""",)
 try:
 for command in commands:
 cursor.execute(command)
 except Exception as e:
 logger.exception("Error in move_data_archives: %s", e)
 return -1
 else:
 logger.info("move_data_archives run successfully")
 return 0

def db_status_handler(db_script_function):
 def inner(cursor):
 commands = db_script_function(cursor)
 function_name = db_script_function.__qualname__
 try:
 for command in commands:
 cursor.execute(command)
 except Exception as e:
 logger.exception("Error in %s: %s", function_name, e)
 return -1
 else:
 logger.info("%s run successfully", function_name)
 return 0
 return inner

@db_status_handler
def update_db_indexes(cursor):
 return (
 """REINDEX DATABASE transactional""",
)

@db_status_handler
def move_data_archives(cursor):
 return (
 """INSERT INTO archive_orders SELECT * from orders
 WHERE order_date < '2016-01-01' """,
 """DELETE from orders WHERE order_date < '2016-01-01'
""",
)

Implementation details

● Abstract implementation details
● Separate them from business logic
● We could use:

○ Properties
○ Context managers
○ Magic methods

class PlayerStatus:
 ...
 def accumulate_points(self, new_points):
 current_score = int(self.redis_connection.get(self.key) or 0)
 score = current_score + new_points
 self.redis_connection.set(self.key, score)

. . .

player_status = PlayerStatus()
player_status.accumulate_points(20)

class PlayerStatus:
 ...
 def accumulate_points(self, new_points):
 current_score = int(self.redis_connection.get(self.key) or 0)
 score = current_score + new_points
 self.redis_connection.set(self.key, score)

. . .

-- implementation details
-- business logic

player_status.accumulate_points(20)

player_status.points += 20
...

print(player_status.points)

player_status.points = 100

The kind of access I’d like to have

class PlayerStatus:

 @property
 def points(self):
 return int(self.redis_connection.get(self.key) or 0)

 @points.setter
 def points(self, new_points):
 self.redis_connection.set(self.key, new_points)

How to achieve it

@property

● Compute values for objects, based on other attributes
● Avoid writing methods like get_*(), set_*()
● Use Python’s syntax instead

Looking for elements

class Stock:
 def __init__(self, categories=None):
 self.categories = categories or []
 self._products_by_category = {}

def request_product_for_customer(customer, product, current_stock):
 product_available_in_stock = False
 for category in current_stock.categories:
 for prod in category.products:
 if prod.count > 0 and prod.id == product.id:
 product_available_in_stock = True
 if product_available_in_stock:
 requested_product = current_stock.request(product)
 customer.assign_product(requested_product)
 else:
 return "Product not available"

def request_product_for_customer(customer, product, current_stock):
 product_available_in_stock = False
 for category in current_stock.categories:
 for prod in category.products:
 if prod.count > 0 and prod.id == product.id:
 product_available_in_stock = True
 if product_available_in_stock:
 requested_product = current_stock.request(product)
 customer.assign_product(requested_product)
 else:
 return "Product not available"

Python was made for the problem

def request_product_for_customer(customer, product, current_stock):
 if product in current_stock:
 requested_product = current_stock.request(product)
 customer.assign_product(request_product)
 else:
 return "Product not available"

The magic method

product in current_stock

Translates into:

current_stock.__contains__(product)

Looking for elements

class Stock:
 ...
 def __contains__(self, product):
 self.products_by_category()
 available = self.categories.get(product.category)
 ...

Maintaining state

● Some functions might require certain pre-conditions to
be met before running

● … and we might also want to make sure to run other
tasks upon completion.

Context Managers
class DBHandler:
 def __enter__(self):
 stop_database_service()
 return self

 def __exit__(self, *exc):
 start_database_service()
...

with DBHandler():
 run_offline_db_backup()

Context Managers
class db_status_handler(contextlib.ContextDecorator):
 def __enter__(self):
 stop_database_service()
 return self

 def __exit__(self, *exc):
 start_database_service()

@db_status_handler()
def offline_db_backup():
 ...

● Import contextlib
● Python 3.2+

Pythonic

A more Pythonic code, should blend with Python’s words.

if product in current_stock:

Python’s mine

Summary

● Python’s magic methods help us write more pythonic code.
○ As well as context managers do.
○ Use them to abstract the internal complexity and implementation

details.
● Properties can enable better readability.
● Decorators can help to:

○ Avoid duplication
○ Separate logic

Achieving quality code

● PEP 8
○ Define coding guidelines for the project
○ Check automatically (as part of the CI)

● Docstrings (PEP 257)/ Function Annotations (PEP 3107)
● Unit tests
● Tools

○ Pycodestyle, Flake8, pylint, radon
○ coala

More info

● Python Enhancement Proposals: PEP 8, PEP 257, PEP 343
○ https://www.python.org/dev/peps/

● Clean Code, by Robert C. Martin
● Code Complete, by Steve McConnell
● Pycodestyle: https://github.com/PyCQA/pycodestyle
● PyCQA: http://meta.pycqa.org/en/latest/

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://github.com/PyCQA/pycodestyle
http://meta.pycqa.org/en/latest/

Questions?

Thanks.

