
Go for Python Programmers

by Shahriar Tajbakhsh at EuroPython 2016

Shahriar Tajbakhsh
Software Engineer @ Osper

github.com/s16h

twitter.com/STajbakhsh

shahriar.svbtle.com

Opposite of P.S.

As I prepared this talk, I realised that it was
probably a bad idea…

Why is this talk a bad idea?

It kind of implies writing/using Go as you would
write Python; which is bad because it leads to

un-idiomatic Go code.

Is it really that bad?

I’m fairly sure it is.

Anyhow…

Talk Structure

1. Quick overview of history.

2. Comparison of general syntax and semantics.

3. Ecosystem and tools of Go and Python.

History

First appeared in 2009.

Influenced by ALGOL 60, Pascal,
C, CSP, Modula-2, Squeak,

Oberon-2, Alef…

First appeared in 1991.

Influenced by ABC, ALGOL 68, C,
C++, Dylan, Haskell, Icon, Java,

Lisp, Modula-3, Perl…

Syntax and Semantics

def main():
 text = 'Hello, world!'
 print(text)

if __name__ == '__main__':
 main()

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Package

Every .go file has to
have a package

declaration.

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Package

All .go files in the same
directory must have the
same package name.

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Import

Usage is very similar to
Python.

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Import

Each package to be
imported is listed on a
separate line, inside

quotation marks.

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Functions

😬

We’ll talk about them
later.

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

Variable Deceleration

package main

import "fmt"

func main() {
text := "Hello, world!"
fmt.Println(text)

}

text is a of type string.
That’s inferred by the
compiler, in this case.

Types

Not quite categorised in
the same way as Go.

Go-style interfaces
don’t really exist Python.

Four categories:

basic, aggregate,
reference and interface

Basic Data Types

int, int8, int16, int32, int64 long

uint, uint8, uint16, uint32, uint64 long

float, float32, float64 float

complex64, complex128 complex

bool bool

string str

Aggregate Types

array array

struct ~class (maybe more of a
namedtuple)

Reference Types

slices list

maps dict

channels 🤔

Interface Types

Used to express generalisation or abstractions
about the behaviour of other types.

We’ll talk a bit more about them later.

Deceleration and Usage

var text string
text = "Some string!"

var count uint = 2

pi := 3.14

Storage location, with
specific type and an

associated name.

Zero Values

var text string
text = "Some string!"

var count uint = 2

pi := 3.14

text is "" at this point.

Variables declared
without an explicit initial

value are given their
zero value.

Fun with Zero Values

counts := make(map[string]int)
input := bufio.NewScanner(os.stdin)
for input.Scan() {
 counts[input.Text()]++
}

We would use Counter
but Go’s zero value

results in behaviour that
we would get with
defaultdict.

Functions

func name(parameter-list) (result-list) {
 body
}

def name(*args, **kwargs):
 body

Functions

func Adder(a int, b int) int {
 return a + b
}

Example of a useless
function.

Functions

func Adder(a int, b int) (c int) {
 c = a + b
 return c
}

You can also have
named results.

Functions

func Adder(a int, b int) (c int) {
 c = a + b
 return a + b
}

Type of a function is
called its signature.

It is defined by
sequence of parameter
types and sequence of

result types.

Functions

Like in Python, functions in Go are first-class
values. They can be passed around.

They’re zero value is nil.

Functions

func Size() (int, int) {
 return 1, 2
}

width, height := Size()

Just like Python,
functions can return
more than one result.

These functions return a
tuple of values.

Errors and Error Handling

try:
 something...
except:
 handle…
else:
 success...
finally:
 whatever...

result, err = Foo()
if err != nil {
 // It's all good
} else {
 // An error occurred.
}

Errors and Error Handling

func main() {
 f := createFile("/tmp/foo.txt")
 defer closeFile(f)
 .
 .
 .
}

Defer is used to
ensure that a function

call is performed later in
a program’s execution,
usually for purposes of

cleanup.

Errors and Error Handling

But sometimes, there are genuinely exceptional
circumstances. For example, when running out

of memory or out-of-bounds array access.

Errors and Error Handling

In these exceptional cases, Go panics.

Errors and Error Handling

When Go panics:

1. Normal execution stops.
2. All deferred function (in that goroutine) calls are

executed.
3. Program crashes with a log message.

Errors and Error Handling

Although giving up is usually the right response
to a panic, it might sometimes make sense to
try and recover from it; at least for clean-up.

Errors and Error Handling

func Parse(input string) (s *Syntax, err error) {
 defer func() {
 if p := recover(); p != nil {
 err = fmt.Errorf("internal error: %v", p)
 }
 }()
 // ... parser...
}

What about OOP?

As we know, Python is object oriented. It has all
the fancy stuff: classes, inheritance etc.

Go can also be considered object oriented but
not in the same way as Python.

OOP in Go

Go says an object is simply a value or variable
that has methods, and a method is a function

associated with a particular type.

OOP in Go

There is no support for inheritance in Go.

✌

Composition it is.

OOP

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

type Point struct {
 X float64
 Y float64
}

OOP

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def distance(self, other):
 return math.sqrt(
 (other.x - self.x) ** 2 +
 (other.y - self.y) ** 2
)

type Point struct {
 X float64
 Y float64
}

func (p Point) Distance(q Point) float64 {
 return math.Hypot(q.X-p.X, q.Y-p.Y)
}

OOP

As mentioned, Go doesn’t have inheritance. But
it composes types by struct embedding.

Composes what by what whatting!?

Struct Embedding

type Point struct {
 X float64
 Y float64
}

type NamedPoint struct {
 Point
 Name string
}

Struct Embedding

point := Point{1, 2}
namedPoint := NamedPoint(point, "Osper")

fmt.Println(namedPoint.X) // 1.0
fmt.Println(namedPoint.Distance(point)) // 0.0
fmt.Println(namedPoint.Name) // Osper

Anything else OOP-esque?

🤔

Anything else OOP-esque?

I mentioned Go interfaces earlier.

Conceptually, they are in fact very similar to
duck-typing in Python.

Interfaces

A type satisfies an interface if it posses all the
methods the interface requires.

Interfaces

type Writer interface {
 Write(p []byte) (n int, err error)
}

type Reader interface {
 Read(p []byte) (n int, err error)
}

type ReadWriter interface {
 Reader
 Writer
}

Concurrency

Go’s support for concurrency is considered one
of its strengths.

In Python…LOL (I joke!)

Concurrency

1. goroutines
(Communicating

Sequential Processes)

2. Traditional shared
memory.

threading (ROFL),
multiprocessing,

asyncio…

Goroutines

Light-weight threads managed by the go
runtime.

To start a new goroutine, just prepend go to a
function call.

Goroutines

Light-weight threads managed by the go
runtime.

To start a new goroutine, just prepend go to a
function call.

Goroutines
package main

import (
 "fmt"
 "time"
)

func WasteTime(delay time.Duration) {
 time.Sleep(delay)
 fmt.Println("Time wasted!")
}

func main() {
 go WasteTime(2000 * time.Millisecond)
 fmt.Println("End of main()")
 time.Sleep(4000 * time.Millisecond)
}

Channels

Channels are a typed “buffer” through which
you can send and receive values between

goroutines.

Channels
package main

import "fmt"

func main() {
// create new channel of type int
ch := make(chan int)

// start new anonymous goroutine
go func() {

// send 42 to channel
ch <- 42

}()

// read from channel
fmt.Println(<-ch)

}

Ecosystem and Tools

Testing

$ go test …

unittest is pretty good.
py.test is sweet.

Lots of really good and
mature tools.

Testing

$ go test …
By convention, files
whose name ends in

_test.go are test files.

Code Formatting

$ go fmt source.go
PEP 8

Use tools such as flake8

Package Management

$ go get package

Will fetch a remote
packages, compile it

and install it.

Quite a few different tools
one can use (e.g. pip).

Some think it’s a mess.

Package Management

$GOPATH environment
variable used to specify

the location of your
workspace.

virtualenv is widely
used for managing per-
project dependencies.

Documentation Generation

$ go doc …

Godoc extracts and
generates

documentation for Go
programs.

Different tools for
automatic and manual
doc generation (e.g.

Sphinx, autodoc, PyDoc
etc.).

Conclusion

😁

Shahriar Tajbakhsh
Software Engineer @ Osper

github.com/s16h

twitter.com/STajbakhsh

shahriar.svbtle.com

That’s all, Thanks!

Q&PA

Questions and Possible Answers

