
1

Lessons Learned after 190M 
Lessons Served



2

Disclaimer



3



Lesson 1 - Keeping a Culture Alive

4



Culture is a foundation

5

• Preserving and passing it along is essential 
• A good onboarding process helps with that 

• Get from developer to Udemy engineer in a short time 
• Automation makes life easy-ish 
• Standardized development environment (with VMs, Docker) 
• You can really deploy the app on day #1 (I did on week #1) 

• Dogfooding - internal courses using our own platform 
• Communications - hundreds of people on 3 continents, all need to be on the same page 

• Slack (we just moved from Hipchat) 
• Standups with hangouts 
• All meeting rooms hangout-capable 

• Use automation to enforce it 
• Love for standards (PEP-8) and automated tests is enforced by our faithful robots 
• You can't push bad code 
• You can't merge questionable code 

• We use custom tools to make accidents less likely 
• … even though it doesn’t always work



Room for improvement

6

• We currently have a shared database used in some development and testing

• All kinds of odd side-effects

• We are moving to small individual DBs for everyone

• We constantly make small improvements to the dev environment, adding code 
that helps debugging etc



7

Lesson 2 - Measure Everything, in bulk 



Metrics, metrics, metrics

8

• Applications collect relevant metrics all the time

• Measuring at scale - stop tracking individual events, start tracking trends.

• Sentry and Datadog

• Google Analytics

• A-B tests and feature flags

• *KNOW* how something will impact us

• and explore what-if scenarios

• Be mindful of distributions

• Measure quickly - large user bases can amplify trends



9

Lesson 3 - Question Everything



“They (Netscape) did (delay a new version by 3 
years). They did it by making the single worst 
strategic mistake that any software company can 
make: 
 
They decided to rewrite the code from scratch” 

–Joel Spolsky, “Things You Should Never Do, Part I”

10



Moving from PHP

11

• A custom-built framework

• That new hires needed to be trained on

• Increasing onboarding costs

• Long ramp-up time

• Without adequate test support

• Maintenance becomes walking on a minefield

• Developers start to optimising for avoiding breakage rather than the best (most reliable, 
most readable, most performant) solution



Choosing the way out

12

• Evaluated multiple options

• Laravel

• Node

• Django

• Rails

• Play



13

This was a serious project



What Udemy got in the end

14

• Django-based application

• Legacy-free

• Python 3

• Much shorter developer onboarding

• Great test coverage (88%)

• Lots of new features

• A consistent codebase

• And some scar tissue where PHP and Django coexisted

• Odd table names (that’s really a minor thing)

• Sometimes, we need to fight the opinionated framework we chose



What Udemy learned

15

• It takes a while (2 years to complete)

• It’s a serious commitment (30% of the engineering team on it)

• Incremental (avoid tempting fate)

• It’s easy to lose sight of the goal and get demotivated

• Release early, release often (so that course can be changed quickly)

• Enforce good practices (flake8, testing, mandatory coverage)



Lesson 4 - The Mission Matters

16



17

Help anyone learn anything



18

Anyone can teach something 
to someone else



Impact

19

1 in 3 Udemy students are starting or growing their own businesses

Lots of instructors are full-time Udemy instructors



20

Len has been with Udemy from 
the start. After a career in 
copywriting, he got involved with 
Udemy to keep busy, share his 
passion, and slide gracefully into 
semi-retirement. He’s now got a 
second career, having taught 
more than 50,000 students across 
his 11 courses.

This is Len



21

By enabling this transformation 
in education, we empower 

people to change their lives



Thank you

22



@udemy 
www.udemy.com 

importthis40

23

http://www.udemy.com

