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Lessons Learned after 190M 
Lessons Served
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Disclaimer
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Lesson 1 - Keeping a Culture Alive
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Culture is a foundation
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• Preserving and passing it along is essential 
• A good onboarding process helps with that 

• Get from developer to Udemy engineer in a short time 
• Automation makes life easy-ish 
• Standardized development environment (with VMs, Docker) 
• You can really deploy the app on day #1 (I did on week #1) 

• Dogfooding - internal courses using our own platform 
• Communications - hundreds of people on 3 continents, all need to be on the same page 

• Slack (we just moved from Hipchat) 
• Standups with hangouts 
• All meeting rooms hangout-capable 

• Use automation to enforce it 
• Love for standards (PEP-8) and automated tests is enforced by our faithful robots 
• You can't push bad code 
• You can't merge questionable code 

• We use custom tools to make accidents less likely 
• … even though it doesn’t always work



Room for improvement
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• We currently have a shared database used in some development and testing

• All kinds of odd side-effects

• We are moving to small individual DBs for everyone

• We constantly make small improvements to the dev environment, adding code 
that helps debugging etc
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Lesson 2 - Measure Everything, in bulk 



Metrics, metrics, metrics
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• Applications collect relevant metrics all the time

• Measuring at scale - stop tracking individual events, start tracking trends.

• Sentry and Datadog

• Google Analytics

• A-B tests and feature flags

• *KNOW* how something will impact us

• and explore what-if scenarios

• Be mindful of distributions

• Measure quickly - large user bases can amplify trends
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Lesson 3 - Question Everything



“They (Netscape) did (delay a new version by 3 
years). They did it by making the single worst 
strategic mistake that any software company can 
make: 
 
They decided to rewrite the code from scratch” 

–Joel Spolsky, “Things You Should Never Do, Part I”
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Moving from PHP
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• A custom-built framework

• That new hires needed to be trained on

• Increasing onboarding costs

• Long ramp-up time

• Without adequate test support

• Maintenance becomes walking on a minefield

• Developers start to optimising for avoiding breakage rather than the best (most reliable, 
most readable, most performant) solution



Choosing the way out
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• Evaluated multiple options

• Laravel

• Node

• Django

• Rails

• Play
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This was a serious project



What Udemy got in the end
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• Django-based application

• Legacy-free

• Python 3

• Much shorter developer onboarding

• Great test coverage (88%)

• Lots of new features

• A consistent codebase

• And some scar tissue where PHP and Django coexisted

• Odd table names (that’s really a minor thing)

• Sometimes, we need to fight the opinionated framework we chose



What Udemy learned
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• It takes a while (2 years to complete)

• It’s a serious commitment (30% of the engineering team on it)

• Incremental (avoid tempting fate)

• It’s easy to lose sight of the goal and get demotivated

• Release early, release often (so that course can be changed quickly)

• Enforce good practices (flake8, testing, mandatory coverage)



Lesson 4 - The Mission Matters
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17

Help anyone learn anything
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Anyone can teach something 
to someone else



Impact
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1 in 3 Udemy students are starting or growing their own businesses

Lots of instructors are full-time Udemy instructors
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Len has been with Udemy from 
the start. After a career in 
copywriting, he got involved with 
Udemy to keep busy, share his 
passion, and slide gracefully into 
semi-retirement. He’s now got a 
second career, having taught 
more than 50,000 students across 
his 11 courses.

This is Len
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By enabling this transformation 
in education, we empower 

people to change their lives



Thank you
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@udemy 
www.udemy.com 

importthis40
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http://www.udemy.com

