
Power of Ensembles

Bargava Subramanian
Data Scientist
Cisco Systems, India

Two huntsmen go bird-hunting. Both huntsmen can hit a target with
probability of 0.2.

They see a flock of 150 birds, atop a banyan tree. First huntsman takes
aim and fires three continuous shots. A minute after that, the second

huntsman fires three shots at the banyan tree.

How many birds did
the second huntsman

shoot?

How many birds did
the second huntsman

shoot?

And then, there were
none

Your model is only as
good as you (and your

features)

Feature
identification/

creation/generation
takes a lot of time

Two different models with same
features can result in different

outputs

Why?

Two different models with same features can
result in different outputs

Searched different
regions of the
solution space

Some common problems faced by modelers

1. Different models

2. Model parameters

3. Number of features

Possible Solution Approach?

Ensemble models are our friends

What is an ensemble?

CPU as a proxy for human IQ

Clever Algorithmic way to search the solution space

But is it new?

But is it new?

Known to
researchers/academia

for long.

Wasn't widely used in
industry until....

Success Story

Netflix $ 1 million
prize competition

Some Advantages
1. Improved accuracy

2. Robustness

3. Parallelization

Base model
diversity

Model
aggregation

Base Model

1. Different training sets

2. Feature sampling

3. Different algorithms

4. Different Hyperparameters

Model Aggregation

1. Voting

2. Averaging

3. Bagging

4. Stacking

WHERE IS
PYTHON ?

RandomizedSearchCV

from scipy.stats import randint as sp_randint

from sklearn.grid_search import GridSearchCV, RandomizedSearchCV
build a classifier
clf = RandomForestClassifier(n_estimators=20)
specify parameters and distributions to sample from
param_dist = {"max_depth": [3, None],
 "max_features": sp_randint(1, 11),
 "min_samples_split": sp_randint(1, 11),
 "min_samples_leaf": sp_randint(1, 11),
 "bootstrap": [True, False],
 "criterion": ["gini", "entropy”]}
run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
 n_iter=n_iter_search)

hyperopt

Python library for serial and parallel
optimization over awkward search spaces, which
may include real-valued, discrete, and conditional
dimensions.

https://github.com/hyperopt/hyperopt

hyperopt

define an objective function
def objective(args):
Define the objective function here

define a search space
from hyperopt import hp
space = hp.choice('a',
 [
 ('Model 1', randomForestModel),
 ('Model 2', xgboostModel)
])

minimize the objective over the space
from hyperopt import fmin, tpe
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

joblib

1. transparent disk-caching of the output
values and lazy re-evaluation (memoize
pattern)

2. easy simple parallel computing

3. logging and tracing of the execution

joblib

import pandas as pd
from sklearn.externals import joblib

build a classifier
train = pd.read_csv('train.csv')
clf = RandomForestClassifier(n_estimators=20)
clf.fit(train)

once the classifier is built we can store it as a synchronized object
and can load it later and use it to predict, thereby reducing memory footprint.

joblib.dump(clf, 'randomforest_20estimator.pkl')
clf = joblib.load('randomforest_20estimator.pkl')

Disadvantages
1. Model human readability isn't great

2. Time/Effort trade-off to improve
accuracy may not make sense

Questions ?

