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What shalt thou learn?

- Building an loT backend -
- Technologies, Protocols and Tools -
- Backend considerations -

- Meet a full running architecture -

- Learn to brew beer -
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So what is it?

Yay!! Awesome!!
M‘ T
-
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Let’'s go technical



Project Requirements
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Project Requirements

- REAL-TIME DATA - - LAST KNOWN STATVS -
- SECVRITY - - DeBVGGING -
- OBFUSCATION - - ADMIN SITE -
- AUTHENTICATION - - MOBILE APP API -
- 2-WAY COMMUNICATION - - RAINBOWS, ETC. -
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- LIGHTWEIGHT -



What thou shalt take care about too...

- SCALABILITY -
— PROVEN TECHNOLOGIES -
- SMALL TECH STACK -
— ERROR TRACKING -
— REDUCE DATA TRANSFER -

- DOCVMENTATION - .1
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Comprehensive loT
Backend Solutions



Amazon loT
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PROJTECT REQVIREMENTS

- REAL-TIME DATA - - LIGHTWEIGHT -
- SECWRITY - LAST KNOWN STATVS -
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Let’'s set up our own
(get a broker...)



Options?

CloudMQTT

lhRabbit!VIO




Options?

-~

Top player for many years

-~

Scalability proven (vertical and horizontal)

-~

Can convert from MQTT to other protocols (AMQP)
No payment per use

*® Familiarity

mRao0itlVIC




Extra bonus!




Extra bonus!
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Now what?
Let's talk to that broker

¢



Eclipse library

https://qithub.com/eclipse/paho.maqtt.python



https://github.com/eclipse/paho.mqtt.python
https://github.com/eclipse/paho.mqtt.python

VCoOo~NOTU A~ WNKF

from _ future__ import absolute_import

import os

impor: re

import daietime

import paho.mgtt.client as mqtt

# The callback for when the client receives a CONNACK response from the server.

def on_connect(client, useracta, rc):
print("Connected with resulut code "+str(rc))
# Subscribing in on_connect() means that if we lose the connection and
# reconnect then subscriptions will be renewed.
client.subscribe("test/europython/+")

def on_disconnect(client, userdata, rc):
print("Disconnected with result code “+str(rc))

# The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
if msg.topic == "test/europython/chesco":
print("I have received my own message :(")

else:
print('Received message from not understandable toric {}: "{}"'
.format(msg.topic, msg.payload))

client = mgtt.Client()

client.on_connect = on_connect
client.on_message = on_message
client.on_disconnect = on_discorrect
client.username_pw_set('root', 'toor') # Stag

client.connect(host="wuroker.mydomain.com", port=8883, keepalive=50)

# Blocking cAl'L that processes network traffic, dispatches callbacks and
# handles reconnecting.

# 0th=: loopx() functions are available that give a threaded interface and a

# wanual interface.
client. loop_forever()
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from _ future__ import absolute_import

import os
import re
import datetime

import paho.mgtt.client as mqtt

# The callback for when the client recei
def on_connect(client, userdata, rc):
print("Connected with result code "+str(rc))
# Subscribing in on_connect() means that if we lose the connection and
# reconnect then subscriptions will be renewed.
client.subscribe("test/europython/+" )/
def on_disconnect(client, userdata, rc):
print("Disconnected with result code “+str(rc))

# The callback for when a PUBLISH messamserver.
def on_message(client, userdata, msg):

if msg.topic == "test/europython/chesco":
print("I have received my own message :(")

ACK response from the server.

else:
print('Received message from not understandable topic {}: "{}"'
.format(msg.topic, msg.payload))

client = mgtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.on_disconnect = on_disconnect
client.username_pw_set('root', 'toor')

client.connect(host="broker.mydomain.com", port=8883, keepalive=50)

# Blocking call that processes network traffic, dispatches callbacks and

# handles reconnecting.

# Other loopx() functions are available that give a threaded interface and a
# manual interface.

client. loop_forever()
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Agalin, optlons?




How are we doing?
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Authentication



Let Python decide

https://github.com/rabbitmq/rabbitmg-auth-backend-http



https://github.com/rabbitmq/rabbitmq-auth-backend-http
https://github.com/rabbitmq/rabbitmq-auth-backend-http
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Obfuscated and
Lightweight messages

Go gle



Protocol Buffers

https://github.com/google/protobuf



https://github.com/google/protobuf
https://github.com/google/protobuf

Protocol Buffers

https://github.com/google/protobuf



https://github.com/google/protobuf
https://github.com/google/protobuf

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = ©;
HOME = 1,
WORK = 2;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;



How are we doing?
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Final Architecture
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anna roll with us?

M Barcelona (ES) Almere (NL)

elements.nl/careers



https://www.elements.nl/careers/
https://www.elements.nl/careers/
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Thank You



Questions?




