Brewing beer with Python

Chesco Igual
@chescales

. ELEMENTS

What shalt thou learn?

- Building an loT backend -
- Technologies, Protocols and Tools -
- Backend considerations -

- Meet a full running architecture -

- Learn to brew beer -

What shalt thou learn?

- Building an loT backend -
- Technologies, Protocols and Tools -
- Backend considerations -

- Meet a full running architecture -

=Learnto brew beer -

MiniBrew

IIIIIIII

Youst Horlrr 3 Sy L0 wales 10
e T e

Clirend Taeped

Datinate tne

02:14:33

———
o

Viest Hereter 13 hedteg the wate to
178 Fo371 DATEMUNS o [AT T AgE,

Cirond ot

Datinate tne

02:14:33

So what is it?

Yay!! Awesome!!
M‘ T
-
_Ep%‘i (and others)

mmmmmmmm

nnnnnn

02:14:33

Let’'s go technical

Project Requirements

Real-time data

BN

Project Requirements

- REAL-TIME DATA -

Security

BN

Project Requirements

- REAL-TIME DATA -

Obfuscation

BN

- SECVRITY -

Project Requirements

- REAL-TIME DATA -
- SECVRITY -

- OBFUSCATION - AUthentiCatiOn

Y b

Project Requirements

wcmens T\O-Way

- OBFYSCATION -

_ammmenes- COMMUNICation

BN

Project Requirements
- REAL-TIME DATA -
~ SECVRITY - R . I .
- OBFVUSCATION - eSI Iency
- AUTHENTICATION -
- 2~-WAY COMMVNICATION -

BN

Project Requirements
- REAL-TIME DATA -
~ SEcvRITY - L | h | h
- OBFUSCATION - I g twe I g t
- AVTHENTICATION -
- 2~-WAY COMMUNICATION -

- RESILIENCY - u

Project Requirements

- REAL-TIME DATA - - LAST KNOWN STATVS -
- SECVRITY - - DeBVGGING -
- OBFUSCATION - - ADMIN SITE -
- AUTHENTICATION - - MOBILE APP API -
- 2-WAY COMMUNICATION - - RAINBOWS, ETC. -
— RESILIENCY -

- LIGHTWEIGHT -

What thou shalt take care about too...

- SCALABILITY -
— PROVEN TECHNOLOGIES -
- SMALL TECH STACK -
— ERROR TRACKING -
— REDUCE DATA TRANSFER -

- DOCVMENTATION - .1

What thou shalt take care about too...

- SCALABILITY -
— PROVEN TECHNOLOGIES -
- SMALL TECH STACK -
— ERROR TRACKING -
— REDUCE DATA TRANSFER -

N

read the project specs for

when I
the first time

f]

“=h3t@ . hnldesigrenl
Source: thecodinglove.com

y
Step by

Communications
Protocol

Communication
Protocols

Communication
Protocols

Comprehensive loT
Backend Solutions

Amazon loT

AWS loT (((I @; p— @ .

_\//
P § i AWS SERVICES
: » — RULES ENGINE With these endpoints you can deliver

= 4 MESSAGES Transform device messages mossages to avery AWS service.
/ based on rules and route to
AWS Services
AWS loT DEVICE SDK 3 AUTHENTICATION DEVICE GATEWAY
Set of client libraries to connect, ‘ & AUTHORIZATION Communicate with
authenticate and exchange messages Sacure with mutual devices via MQTT,
i authentication and encryption WebSockets, p—
and HTTP 11 D=
—
APPLICATIONS
DEVICE SHADOWS ' Applications can connect to
. (4! AL Persistent device state during ; shadows at any time using an AP

" L dne ‘/l D intermittent connections
“ N "{ A
\/ iy | ===

REGISTRY :
Assign a unique identity to AWS loT API

each devices

teccssssscsscssccccccccncccc-iifcs 3 jesssssssssssssscscssssssssssssscsssasd

PROJTECT REQVIREMENTS

- REAL-TIME DATA - - LIGHTWEIGHT -
- SECWRITY - LAST KNOWN STATVS -
- OBFUSCATION - - DEBVGGING -
- AVTHENTICATION - - ADMIN SITE -
- 2-WAY COMMUNICATION -~ - MOBILE APP AP -

- RESILIENCY - - RAINBOWS, ETC. -

‘

Let’'s set up our own
(get a broker...)

Options?

CloudMQTT

lhRabbit!VIO

Options?

-~

Top player for many years

-~

Scalability proven (vertical and horizontal)

-~

Can convert from MQTT to other protocols (AMQP)
No payment per use

*® Familiarity

mRao0itlVIC

Extra bonus!

Extra bonus!

‘

Now what?
Let's talk to that broker

¢

Eclipse library

https://qithub.com/eclipse/paho.maqtt.python

https://github.com/eclipse/paho.mqtt.python
https://github.com/eclipse/paho.mqtt.python

VCoOo~NOTU A~ WNKF

from _ future__ import absolute_import

import os

impor: re

import daietime

import paho.mgtt.client as mqtt

The callback for when the client receives a CONNACK response from the server.

def on_connect(client, useracta, rc):
print("Connected with resulut code "+str(rc))
Subscribing in on_connect() means that if we lose the connection and
reconnect then subscriptions will be renewed.
client.subscribe("test/europython/+")

def on_disconnect(client, userdata, rc):
print("Disconnected with result code “+str(rc))

The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
if msg.topic == "test/europython/chesco":
print("I have received my own message :(")

else:
print('Received message from not understandable toric {}: "{}"'
.format(msg.topic, msg.payload))

client = mgtt.Client()

client.on_connect = on_connect
client.on_message = on_message
client.on_disconnect = on_discorrect
client.username_pw_set('root', 'toor') # Stag

client.connect(host="wuroker.mydomain.com", port=8883, keepalive=50)

Blocking cAl'L that processes network traffic, dispatches callbacks and
handles reconnecting.

0th=: loopx() functions are available that give a threaded interface and a

wanual interface.
client. loop_forever()

LCoOo~NOU A~ WNRE

from _ future__ import absolute_import

import os
import re
import datetime

import paho.mgtt.client as mqtt

The callback for when the client recei
def on_connect(client, userdata, rc):
print("Connected with result code "+str(rc))
Subscribing in on_connect() means that if we lose the connection and
reconnect then subscriptions will be renewed.
client.subscribe("test/europython/+")/
def on_disconnect(client, userdata, rc):
print("Disconnected with result code “+str(rc))

The callback for when a PUBLISH messamserver.
def on_message(client, userdata, msg):

if msg.topic == "test/europython/chesco":
print("I have received my own message :(")

ACK response from the server.

else:
print('Received message from not understandable topic {}: "{}"'
.format(msg.topic, msg.payload))

client = mgtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.on_disconnect = on_disconnect
client.username_pw_set('root', 'toor')

client.connect(host="broker.mydomain.com", port=8883, keepalive=50)

Blocking call that processes network traffic, dispatches callbacks and

handles reconnecting.

Other loopx() functions are available that give a threaded interface and a
manual interface.

client. loop_forever()

‘

APltime V¢ @

Agalin, optlons?

How are we doing?

@?@‘

Authentication

Let Python decide

https://github.com/rabbitmq/rabbitmg-auth-backend-http

https://github.com/rabbitmq/rabbitmq-auth-backend-http
https://github.com/rabbitmq/rabbitmq-auth-backend-http

How are we doing?

How are we doing?

‘

Obfuscated and
Lightweight messages

Go gle

Protocol Buffers

https://github.com/google/protobuf

https://github.com/google/protobuf
https://github.com/google/protobuf

Protocol Buffers

https://github.com/google/protobuf

https://github.com/google/protobuf
https://github.com/google/protobuf

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = ©;
HOME = 1,
WORK = 2;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;

How are we doing?

How are we doing?

Final Architecture

@ o

anna roll with us?

M Barcelona (ES) Almere (NL)

elements.nl/careers

https://www.elements.nl/careers/
https://www.elements.nl/careers/

‘

Thank You

Questions?

