
C Extensions for Python

We’re all here because we like Python, the programming language.

Today I’m going to talk a little about Python, the C program
underlying that programming language, by walking through how I
learned the basics of making a C library callable from Python code --
and vice versa.

Here’s a screen shot of the first time I segfaulted the Python REPL.

Background

● Recurse Center, summer 2014

● Code & link to slides:

github.com/sophiadavis/hash-table

I’m Sophia, an American software developer based in Amsterdam.

In the summer of 2014 I attended the Recurse Center, a sort of
writers’ workshop for programmers in NYC.

This talk comes out of one of the very down-the-rabbit-hole projects
I worked on while there.

Code and soon -- the slides -- for this talk are available via my github
page -- my username is “sophiadavis”, and the repo is hash-table.

https://github.com/sophiadavis/hash-table
https://github.com/sophiadavis/hash-table

Background

Let’s get started. This is the story of how I shaved a yak.

Probably, if you find yourself breaking out the Python C API docs,
you started with a separate problem --

one you thought you could solve using tools in an existing C
codebase.

For me, this was a hash table implementation.

https://en.wikipedia.org/wiki/Yak

https://en.wikipedia.org/wiki/Yak
https://en.wikipedia.org/wiki/Yak

Let’s talk about Python hash tables!

● Data structure for mapping keys to values

● `Dict`

● Very efficient:

add -- O(1)

lookup -- O(1)

remove -- O(1)

This is probably review for most of you, but in brief:

A hash table is a powerful data structure for storing key-value pairs
-- for associating keys with values, such that every key maps to one
value.

Python people tend to call them dictionaries.

They’re so powerful because they’re very efficient -- no matter how
many key-value pairs you have in your hash table, the average time
complexity of adding a key-value pair, looking up the value
associated with a key, and removing a key-value pair is constant -- O
(1).

How does it achieve this amazing performance?

Hash tables -- how they work

● Array of “buckets”

● Hash function

Under the hood, a hash table is just an array.

We’ll call each index of the array a “bucket”. Each key-value pair
gets put in one of these “buckets”.

And how do we know which key-value pair goes in which bucket?
That’s where the “hash” of “hash table” comes in.

A “hash function” is a mapping of any arbitrary input to a fixed set
of values -- like the set of integers.

When we want to put a key and value in our hash table, we pass the
key through a hash function to convert it to an integer, and use this
number (modulo the size of the array) to determine which bucket
the key-value pair should go in.
It works similarly for lookup and remove -- calculate the hash of the
key, go to the bucket associated with the hash, and lookup or
remove the value stored with that key.

Here’s a picture (thanks wikipedia) of a phonebook stored as a hash
table -- calculate the hash value of each person’s name, use that
number to determine which bucket in the array to put the phone
number entry.

https://commons.wikimedia.org/w/index.php?curid=6471915

https://commons.wikimedia.org/w/index.php?curid=6471915
https://commons.wikimedia.org/w/index.php?curid=6471915

Hash tables -- how they work

Collisions?

But what happens if the hash values of two keys result in them
being put in the same bucket?

This is called a “collision”.

Hash tables -- how they work

Collisions?

Just use a linked list!

There are a couple ways of dealing with this, but one way is to store
a linked list at each bucket in the array.

Every item that gets assigned to that bucket gets tacked onto the
linked list.

Again looking at the wikipedia example, we’re using a hash function
that results in John Smith and Sandra Dee being assigned to the
same index -- 152 -- so we’ve just started a list containing both
entries.

Hash tables -- how they work

Linked list efficiency:

 add -- O(1)

 lookup -- O(n)

 remove -- O(n)

But if lots of items end up in the same buckets, then our hash table
starts to look like a lot of linked lists, and

the performance of linked lists is not as good as those of hash
tables when looking up or removing an item.

A lookup or remove on a linked list, in the average case, involves
traversing the list -- which is an O(n) operation.

And as we add more items to the hash table, it is inevitable that
more and more entries will end up in the same bins.

Consider a hash table with an underlying array of length 1. No
matter what hash function you use, all items will be stored in the
one and only bucket -- which will rapidly turn into a large linked list.

http://4.bp.blogspot.com/-
ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-

http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg
http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg
http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg

list.jpg

http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg
http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg

Hash tables -- how they work

● ==> resize

● Max load proportion

In order to keep average performance constant, we’ll occasionally

increase the size of the underlying array and redistribute the keys.

Then (provided we’re using a decent hash function), the number of

collisions will decrease -- because we’re spreading out the same

number of keys among more buckets.

How do we know when to resize?

If we keep track of the number of items in the hash table compared

to the length of the underlying array, we should resize when the

proportion of items to size reaches a certain threshhold -- we’ll call

this the maximum load proportion.

http://dab1nmslvvntp.cloudfront.net/wp-

http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png
http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png

content/uploads/2013/04/array5b.png

http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png
http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png

How will performance be affected by:

● Initial size of array

● Hash function

● Max load proportion

So we’ve talked about three variable properties of hash tables:

- size of the underlying array

- hash function

- maximum load proportion

All three can affect performance, for example:

- initial size helps determines how often you’ll need to resize

your array (which is a costly operation)

- the hash function impacts how many collisions you may have,

and more complicated hash functions will take longer to

evaluate

- the maximum load proportion plays a role in how long those

linked lists may get before you resize

So I wrote a C implementation

● Choose max load proportion, initial size

● API: init, add, lookup, remove, free_table

● Integers, floats, strings

To explore how these affect performance, I wrote my own hash

table implementation.

It enabled the user to choose the maximum load proportion and

initial size of the underlying array.

My library provided functions to

- initialize a table with the given properties

- add, lookup, and remove key-value pairs (of Integer, Float,

and String type)

- free the memory malloc’d to store the data structure (array,

linked lists, data, whatever)

C API
HashTable *add(

long int hash,
union Hashable key, hash_type key_type,
union Hashable value, hash_type value_type,
HashTable *hashtable);

I also wanted to explore how different hash functions would affect
performance.

This is the signature of the “add” function in my C implementation.

C API
HashTable *add(

long int hash,
union Hashable key, hash_type key_type,
union Hashable value, hash_type value_type,
HashTable *hashtable);

It accepts a “hash” argument.

My idea was the user should do their own hashing of the keys and
pass the hash value in when adding, looking up, or removing an
entry.

My library would find the appropriate bucket for the key-value pair
based on the passed-in hash.

My hash function
long int calculate_hash(union Hashable key, hash_type key_type) {
 long int hash;
 switch (key_type) {
 case INTEGER:
 hash = key.i;
 break;
 case DOUBLE:
 hash = floor(key.f);
 break;
 case STRING:
 hash = strlen(key.str);
 break;
 default:
 hash = 0;
 break;
 }
 return hash;
 // TODO actually hash the keys
}

If the user chose not to pass in a hash with their key, my library
used this hand-rolled hash function:

My hash function
long int calculate_hash(union Hashable key, hash_type key_type) {
 long int hash;
 switch (key_type) {
 case INTEGER:
 hash = key.i;
 break;
 case DOUBLE:
 hash = floor(key.f);
 break;
 case STRING:
 hash = strlen(key.str);
 break;
 default:
 hash = 0;
 break;
 }
 return hash;
 // TODO actually hash the keys
}

- if it’s an integer, use that integer

My hash function
long int calculate_hash(union Hashable key, hash_type key_type) {
 long int hash;
 switch (key_type) {
 case INTEGER:
 hash = key.i;
 break;
 case DOUBLE:
 hash = floor(key.f);
 break;
 case STRING:
 hash = strlen(key.str);
 break;
 default:
 hash = 0;
 break;
 }
 return hash;
 // TODO actually hash the keys
}

- if it’s a float, round it down and use that integer

My hash function
long int calculate_hash(union Hashable key, hash_type key_type) {
 long int hash;
 switch (key_type) {
 case INTEGER:
 hash = key.i;
 break;
 case DOUBLE:
 hash = floor(key.f);
 break;
 case STRING:
 hash = strlen(key.str);
 break;
 default:
 hash = 0;
 break;
 }
 return hash;
 // TODO actually hash the keys
}

- if it’s a string, use the length of the string
-

inspired by the hash function that -- no joke -- an early version of
PHP used to store function names in the symbol table

My hash function
long int calculate_hash(union Hashable key, hash_type key_type) {
 long int hash;
 switch (key_type) {
 case INTEGER:
 hash = key.i;
 break;
 case DOUBLE:
 hash = floor(key.f);
 break;
 case STRING:
 hash = strlen(key.str);
 break;
 default:
 hash = 0;
 break;
 }
 return hash;
 // TODO actually hash the keys
}

This is basically a terrible hash function.

Parsing strings with C!

(I used snprintf)

Next I set off to do some hard core bit-shifting and string
manipulation in C to experiment with writing my own hash
functions!

Just joking.

If I were going to experiment, I’d rather do it in

Python

http://natashenka.ca/posters/

http://natashenka.ca/posters/
http://natashenka.ca/posters/

Now, let’s talk about Python

Wouldn’t it be nice...

>>> def my_awesome_python_hash(obj):

...

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

Wouldn’t it be nice if I could write some cool hash functions in
Python,

and be able to call them from my C hashtable stuff?

Wouldn’t it be nice...

>>> def my_awesome_python_hash(obj):

...

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

and be able to call them from my C hashtable stuff?

Now, let’s talk about Python

● simple
● concise
● faster to write

than C...

After all, Python is so nice and easy to write.

And I’m a lot faster writing Python than I am at writing C.

But under the hood ...

But it’s actually...

Python is actually a really big and complicated C program that
processes the strings of whitespace sensitive code that we write!

And, thankfully, there is a well documented API for bridging the gap
between python-the-programming-language and python-the-c-
program.

The API
#include <Python.h>

It’s as easy to use this API as including one simple line in a C file.

Then, the magic begins.

http://img.memecdn.com/magic-cat_o_1585787.jpg

PyObject definition
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

My goal is to call a hash function, written in pure Python, from
inside my C hash table library.

Disclaimer: the C API did change between Python 2 and Python 3,
and all code in my talk is Python 2 specific.

So I started by wrapping everything I needed to use my hash table
library inside of a struct:

PyObject definition
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

- I’ve got a pointer to my hashtable data structure

PyObject definition
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

- some of the other properties associated with a hashtable --
current load, initial size, etc.

PyObject definition
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

And this PyObject pointer to a hash function.

I had the data that I wanted for my new Python type,

but I needed to implement the API telling Python how to manage
objects of my new type.

PyObject definition
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

It starts with this PyObject_HEAD, which is a Macro imported with
the Python headers.

This expands to the bare minimum you need to create a new
Python object:

a reference count (I chose to ignore this at the time)

and a pointer to...

PyTypeObject definition
 static PyTypeObject HashTablePyType = {

...

 "hashtable.HashTable", /* tp_name */

 (destructor)HashTablePyObject_dealloc, /* tp_dealloc */

 (printfunc)HashTablePy_print, /* tp_print */

 (reprfunc)HashTablePy_repr, /* tp_repr */

 HashTablePy_methods, /* tp_methods */

 HashTable_members, /* tp_members */

 (initproc)HashTablePyObject_init, /* tp_init */

 (freefunc)HashTablePyObject_free, /* tp_free */

...

 };

This “PyTypeObject” thing,

which is just a struct of function pointers defining how Python
should manage objects of the hash table type -- things like:

PyTypeObject definition
 static PyTypeObject HashTablePyType = {

...

 "hashtable.HashTable", /* tp_name */

 (destructor)HashTablePyObject_dealloc, /* tp_dealloc */

 (printfunc)HashTablePy_print, /* tp_print */

 (reprfunc)HashTablePy_repr, /* tp_repr */

 HashTablePy_methods, /* tp_methods */

 HashTable_members, /* tp_members */

 (initproc)HashTablePyObject_init, /* tp_init */

 (freefunc)HashTablePyObject_free, /* tp_free */

...

 };

- class name

PyTypeObject definition
 static PyTypeObject HashTablePyType = {

...

 "hashtable.HashTable", /* tp_name */

 (destructor)HashTablePyObject_dealloc, /* tp_dealloc */

 (printfunc)HashTablePy_print, /* tp_print */

 (reprfunc)HashTablePy_repr, /* tp_repr */

 HashTablePy_methods, /* tp_methods */

 HashTable_members, /* tp_members */

 (initproc)HashTablePyObject_init, /* tp_init */

 (freefunc)HashTablePyObject_free, /* tp_free */

...

 };

- how to print or repr

PyTypeObject definition
 static PyTypeObject HashTablePyType = {

...

 "hashtable.HashTable", /* tp_name */

 (destructor)HashTablePyObject_dealloc, /*tp_dealloc */

 (printfunc)HashTablePy_print, /* tp_print */

 (reprfunc)HashTablePy_repr, /* tp_repr */

 HashTablePy_methods, /* tp_methods */

 HashTable_members, /* tp_members */

 (initproc)HashTablePyObject_init, /* tp_init */

 (freefunc)HashTablePyObject_free, /* tp_free */

...

 };

- And how to initialize, delete, and free the memory allocated
to hold objects --

-
I’ll come back to these later

There’s a lot more that I left out.

Module definition
 PyMODINIT_FUNC inithashtable(void) {
 PyObject* m;
 static char hashtable__doc__[] = "This module...";

 HashTablePyType.tp_new = PyType_GenericNew;
 if (PyType_Ready(&HashTablePyType) < 0)

return;

 m = Py_InitModule3("hashtable",HashTablePy_methods,hashtable__doc__);

 Py_INCREF(&HashTablePyType);
 PyModule_AddObject(m, "HashTable", (PyObject *)&HashTablePyType);
 }

I had a basic type defined, but I needed some way to use this type
within Python code.

So I created a module to contain my hash table type.

Note that module initialization is one aspect of the C API that
changed between Python 2 and Python 3, and this code is Python 2
specific.

In order to initialize a module, you need a PyMODINIT_FUNC
function with the name init<modulename> (so inithashtable in my
case).

When a Python program imports a module for the first time, this is
the function that gets run.

Again, I’ve left a few things out, but of note are:

Module definition
 PyMODINIT_FUNC inithashtable(void) {
 PyObject* m;
 static char hashtable__doc__[] = "This module...";

 HashTablePyType.tp_new = PyType_GenericNew;
 if (PyType_Ready(&HashTablePyType) < 0)

return;

 m = Py_InitModule3("hashtable",HashTablePy_methods,hashtable__doc__);

 Py_INCREF(&HashTablePyType);
 PyModule_AddObject(m, "HashTable", (PyObject *)&HashTablePyType);
 }

if (PyType_Ready(&HashTablePyType) < 0)
Return;

⇒ This initializes the type, and fills in more of the PyTypeObject
with compiler-specific functions.

Module definition
 PyMODINIT_FUNC inithashtable(void) {
 PyObject* m;
 static char hashtable__doc__[] = "This module...";

 HashTablePyType.tp_new = PyType_GenericNew;
 if (PyType_Ready(&HashTablePyType) < 0)

return;

 m = Py_InitModule3("hashtable",HashTablePy_methods,hashtable__doc__);

 Py_INCREF(&HashTablePyType);
 PyModule_AddObject(m, "HashTable", (PyObject *)&HashTablePyType);
 }

Initializing the module.

Module definition
 PyMODINIT_FUNC inithashtable(void) {
 PyObject* m;
 static char hashtable__doc__[] = "This module...";

 HashTablePyType.tp_new = PyType_GenericNew;
 if (PyType_Ready(&HashTablePyType) < 0)

return;

 m = Py_InitModule3("hashtable",HashTablePy_methods,hashtable__doc__);

 Py_INCREF(&HashTablePyType);
 PyModule_AddObject(m, "HashTable", (PyObject *)&HashTablePyType);
 }

And finally, this line adds my new type to the module dictionary,

allowing us to create new objects via the class.

Packaging -- setup.py
from distutils.core import setup, Extension

setup(name="hashtable", version="1.0",

 ext_modules=[

 Extension("hashtable", ["hashtablemodule_helpers.c",

 "hashtablemodule.c",

 "hashtable.c"])])

There are multiple ways to package a Python module.

One simple way is to write a setup.py file telling Python:
 the name of your module
which C files your module needs, etc.

This is the entire contents of my setup.py file.

Packaging -- setup.py

Running “python setup.py build” creates a “build” subdirectory
inside your working directory,

and outputs a compiled file containing your extension

that can be dynamically loaded into a Python program.

On Unix, this is a “shared object” file.

I use a mac, so my module was named “hashtable.so”.

On Windows, this would be a DLL with a “.pyd” extension.

If you start up a Python interpreter or run a Python program in the
same directory as that file,

then you can type “import hashtable” and do hashtable stuff
from Python!

Do hashtable stuff in Python!

Well, sort of...

My program kept segfaulting.

I was forced to look at a section of the API docs that I had kinda
been ignoring -- the section on reference counting.

Reference Counting

One reason why Python is so nice is that it’s a pretty high level
language. It handles a lot of things for the programmer -- for
example, memory management.

When you use data in a Python program, Python takes care of
dealing with the os to ensure that the data is stored in memory.
However, if Python only *added* to your program’s memory,
eventually the program will run out of memory.

So Python needs to know when it can remove data from memory,
once that data isn’t being used any more.

Python-the-C-program uses a method called reference counting to
know when it can safely free objects. It keeps track of the number
of other things referring to a given object.
When that “reference count” drops to 0, Python cleans up the
unneeded object by calling the “deallocation” function defined for
its type.

http://rypress.com/tutorials/objective-c/media/memory-
management/reference-counting.png

http://rypress.com/tutorials/objective-c/media/memory-management/reference-counting.png
http://rypress.com/tutorials/objective-c/media/memory-management/reference-counting.png
http://rypress.com/tutorials/objective-c/media/memory-management/reference-counting.png

Reference Counting

sys.getrefcount(“bilbao”)

gc.get_referrers(“bilbao”)

Here are two tools that can help us understand reference counting:

From the sys module, we have the getrefcount function.

From the gc, “garbage collection”, module, we have get_referrers,
which returns a list of all things referencing an object.

Reference Counting
 import gc
 import sys
 def show_ref_counts(an_object, times_to_call=1, show_referrers=False):

 if times_to_call > 0:
referrers = gc.get_referrers(an_object)
refcount = len(referrers)

print "--> In function, refcount: {}".format(refcount)

if show_referrers:
 print "---> referrers: {}".format(referrers)

show_ref_counts(an_object, times_to_call - 1)

Here, I’ve written a function, show_ref_counts.

Reference Counting
 import gc
 import sys
 def show_ref_counts(an_object, times_to_call=1, show_referrers=False):

 if times_to_call > 0:
referrers = gc.get_referrers(an_object)
refcount = len(referrers)

print "--> In function, refcount: {}".format(refcount)

if show_referrers:
 print "---> referrers: {}".format(referrers)

show_ref_counts(an_object, times_to_call - 1)

All it does is find the objects referring to the argument named
an_object.

Reference Counting
 import gc
 import sys
 def show_ref_counts(an_object, times_to_call=1, show_referrers=False):

 if times_to_call > 0:
referrers = gc.get_referrers(an_object)
refcount = len(referrers)

print "--> In function, refcount: {}".format(refcount)

if show_referrers:
 print "---> referrers: {}".format(referrers)

show_ref_counts(an_object, times_to_call - 1)

And print out how many there are.

Reference Counting
 import gc
 import sys
 def show_ref_counts(an_object, times_to_call=1, show_referrers=False):

 if times_to_call > 0:
referrers = gc.get_referrers(an_object)
refcount = len(referrers)

print "--> In function, refcount: {}".format(refcount)

if show_referrers:
 print "---> referrers: {}".format(referrers)

show_ref_counts(an_object, times_to_call - 1)

Plus, it can optionally call itself multiple times.

Reference Counting
 import gc
 import sys
 def show_ref_counts(an_object, times_to_call=1, show_referrers=False):

 if times_to_call > 0:
referrers = gc.get_referrers(an_object)
refcount = len(referrers)

print "--> In function, refcount: {}".format(refcount)

if show_referrers:
 print "---> referrers: {}".format(referrers)

show_ref_counts(an_object, times_to_call - 1)

And optionally print out extra details -- about exactly *which*
objects own references to the argument “an_object”.

Reference Counting -- demo

So, in a Python shell, we’re going to import the tools we need: the sys and gc
modules, and my function (from a file called “refcounts”).

First, we’ll instantiate an object...
If we assign another variable to that object...

What exactly is referring to our object? We’ll use the get_referrers function...
So there’s a dict, with the two variables we assigned to our object at memory
location blah. That dictionary is the namespace of local variables.

Now, what happens to the reference count on our object if we pass it as an
argument to a function?

We’ll use that function “show_ref_counts”.
First we’ll just call it once, passing in our object, *showing* details on the
referrers.
There’s still the local namespace, plus something new -- a “frame” object, that
now owns a reference to our_object.

And if we call “show_ref_counts” again, this time having it call itself lots of

times.
We see that each time, the reference count increases by one -- and if we were
looking at the details, we’d see a new “frame” object added to the referrers
with each call.

Reference Counting

PyINCREF

PyDECREF

If you’re going to write a C extension and work with Python

objects, first, you need to signal to Python when your program

starts working with a certain object, by triggering Python to

increase the reference count on this object by one, thereby keeping

it in memory while you -- represented by that one -- need it.

Otherwise, if this reference count drops to 0, Python will free the

object.

When your program tries to use the object -- now in a piece of

memory that has been released back to the os, your program will

crash (hopefully, or weird shit will happen).

You also need to take care to tell Python when you’re done working

with a certain object by decrementing its reference count by one.

If you don’t do your part in decrementing the ref count on that

object, its reference count can never decrease to 0, and it will never

be freed from memory. This is a memory leak.

The Python C API provides two macros to communicate when you’

re starting to work with an object and when you’re finished working

with an object.

Calling PyINCREF on an object increases its reference count by 1.

Calling PyDECREF decreases its reference count by one, and, if the

reference count has reached 0, it calls the deallocation function for

the type.

Forgetting to PyINCREF
static void
HashTablePyObject_dealloc(HashTablePyObject* self)
{
 printf("C: ---------> Dealloc-ing\n");

 Py_XDECREF(self->hash_func);
 if (self->hashtable != NULL) {

 self->ob_type->tp_free((PyObject*)self);

 }

}

So, what happens when you forget to PyINCREF an object that you
need to work on?

Remember that PyTypeObject thing -- the struct of function
pointers that defined the Python API for my type?

I had defined this as the “deallocation” function for Python to call
when the reference count of a hash table object reaches 0.

It does 2 important things:
● printf debugging so we can see when it’s being called
● AND

Forgetting to PyINCREF
static void
HashTablePyObject_dealloc(HashTablePyObject* self)
{
 printf("C: ---------> Dealloc-ing\n");

 Py_XDECREF(self->hash_func);
 if (self->hashtable != NULL) {

 self->ob_type->tp_free((PyObject*)self);

 }

}

Calling the free function that I had defined for my type (via the
PyTypeObject struct).

Forgetting to PyINCREF

static void
HashTablePyObject_free(HashTablePyObject* self)
{
 printf("C: ---------> Free-ing\n");
 free_table(self->hashtable);
}

That free function (has some nice printf’s),

then calls the free_table function provided by my initial C program
to free the memory malloc’d for the hash table.

Forgetting to PyINCREF
static HashTablePyObject *
HashTablePy_set(HashTablePyObject *self, PyObject *args)
{

 ## parse key/value types, handle errors, etc. ...

 # At first, I didn't have this:
 // Py_INCREF(self);

 ## Update the hashtable...

But
return self;

}

Initially, the `set` method of my hashtable returned the hashtable
object -- see: “return self”.

Now, there are a lot of rules (and exceptions) about in which
situations the caller vs the callee is responsible for PyINCREFing
arguments, and I barely scratched the surface.

However, I think I caused a problem here
because if a C function returns a reference to an object -- like ‘self’
here -- then that reference must be owned by the function --

i.e. the object must have been PyINCREF’d inside the function.

Forgetting to PyINCREF
static HashTablePyObject *
HashTablePy_set(HashTablePyObject *self, PyObject *args)
{

 ## parse key/value types, handle errors, etc. ...

 # At first, I didn't have this:
 // Py_INCREF(self);

 ## Update the hashtable...

But
return self;

}

But I had left that out.

Forgetting to PyINCREF -- demo

First, we’ll use the setup.py script to build our module.
And I have another window open to the build directory.
There’s our .so file.
And if we start up the python repl, then we can import the module.
I’ll instantiate a new hash table object, and start setting some
values.

Remember that `set` returns the hash table object -- so that’s the
string representation of our object which was just returned from
the method: each square represents a bucket, and each star
represents a key-value pair that was assigned to the linked list at
that bucket.

Uh - oh, so we just saw the printfs --
we didn’t tell Python to increase the reference count on that hash
table.
But all other referrers must have released their references to that
hash table, its reference count has dropped to 0, and the clean-up

functions have been called.

So now if we try to do anything with the object... Python segfaults.

Forgetting to PyINCREF
static HashTablePyObject *
HashTablePy_set(HashTablePyObject *self, PyObject *args)
{

 ## parse key/value types, handle errors, etc. ...

 # At first, I didn't have this:
 Py_INCREF(self);

 ## Update the hashtable...

But
return self;

}

So let’s add that Py_INCREF.

Forgetting to PyINCREF -- demo

I’ve rebuilt the module and am starting up the python repl again...

Import the module, instantiate a new hash table and start setting
values.

We’ll set pi, set some squares, hey look! It resized! set “yolo”! It
resized again, great. Looks like we’re not segfaulting any more.

Forgetting to PyDECREF
typedef struct {

 PyObject_HEAD

 HashTable *hashtable;

 long int size;

 long int load;

 double max_load;

 PyObject *hash_func;

} HashTablePyObject;

The other type of mistake you can make is forgetting to call
PyDECREF when you’re done with an object.

Remember that my Python HashTable type struct contained a
pointer to another Python object --

namely, the hash function used to hash keys.

Forgetting to PyDECREF
static int

HashTablePyObject_init(HashTablePyObject *self, PyObject *args)

{

 ...

 if (hash_func == NULL) {

 self->hash_func = default_py_hash_func();

 }

 else {

 self->hash_func = hash_func;

 }

 Py_INCREF(self->hash_func);

}

Here’s a snippet from the initialization function of my HashTable.

Forgetting to PyDECREF
static int

HashTablePyObject_init(HashTablePyObject *self, PyObject *args)

{

 ...

 if (hash_func == NULL) {

 self->hash_func = default_py_hash_func();

 }

 else {

 self->hash_func = hash_func;

 }

 Py_INCREF(self->hash_func);

}

Along with some other stuff, I set the object’s hash_func attribute:

either to the hash function passed in when the instance was
initialized

Forgetting to PyDECREF
static int

HashTablePyObject_init(HashTablePyObject *self, PyObject *args)

{

 ...

 if (hash_func == NULL) {

 self->hash_func = default_py_hash_func();

 }

 else {

 self->hash_func = hash_func;

 }

 Py_INCREF(self->hash_func);

}

or to Python’s built-in hash function by default

Forgetting to PyDECREF
static int

HashTablePyObject_init(HashTablePyObject *self, PyObject *args)

{

 ...

 if (hash_func == NULL) {

 self->hash_func = default_py_hash_func();

 }

 else {

 self->hash_func = hash_func;

 }

 Py_INCREF(self->hash_func);

}

And I increase the reference count on this hash_function object --

I need to tell Python that I’m going to be working with this function
for a while, please don’t clean it up.

We say that each hash table object owns a reference to a hash
function object.

Forgetting to PyDECREF

static void

HashTablePyObject_dealloc(HashTablePyObject* self)

{

 Py_XDECREF(self->hash_func);

 if (self->hashtable != NULL) {

 self->ob_type->tp_free((PyObject*)self);

 }

}

Conversely, in the deallocation function for my type, I tell Python to
decrement the reference count on that hash function object.

Here’s a simple demo.

Forgetting to PyDECREF
def main():

print "main: {} referrers".format(sys.getrefcount(hash))

do_hashtable_stuff()

do_hashtable_stuff()

do_hashtable_stuff()

print "main: {} referrers".format(sys.getrefcount(hash))

def do_hashtable_stuff():

h = hashtable.HashTable(hash_func=hash)

print "do_ht_stuff: {} referrers".format(sys.getrefcount(hash))

print "leaving do_ht_stuff"

We’re going to look at the reference count on Python’s built-in
hash function.

We have a function do_hashtable_stuff, which

Forgetting to PyDECREF
def main():

print "main: {} referrers".format(sys.getrefcount(hash))

do_hashtable_stuff()

do_hashtable_stuff()

do_hashtable_stuff()

print "main: {} referrers".format(sys.getrefcount(hash))

def do_hashtable_stuff():

h = hashtable.HashTable(hash_func=hash)

print "do_ht_stuff: {} referrers".format(sys.getrefcount(hash))

print "leaving do_ht_stuff"

initializes a hash table with the built-in hash function.

So our hash table object will own a reference to the built-in hash
function.

Forgetting to PyDECREF
def main():

print "main: {} referrers".format(sys.getrefcount(hash))

do_hashtable_stuff()

do_hashtable_stuff()

do_hashtable_stuff()

print "main: {} referrers".format(sys.getrefcount(hash))

def do_hashtable_stuff():

h = hashtable.HashTable(hash_func=hash)

print "do_ht_stuff: {} referrers".format(sys.getrefcount(hash))

print "leaving do_ht_stuff"

It prints the reference count on the hash function object

Forgetting to PyDECREF
def main():

print "main: {} referrers".format(sys.getrefcount(hash))

do_hashtable_stuff()

do_hashtable_stuff()

do_hashtable_stuff()

print "main: {} referrers".format(sys.getrefcount(hash))

def do_hashtable_stuff():

h = hashtable.HashTable(hash_func=hash)

print "do_ht_stuff: {} referrers".format(sys.getrefcount(hash))

print "leaving do_ht_stuff"

This program just calls do_hashtable_stuff a couple times.

Forgetting to PyDECREF -- demo

Let’s look at how the reference count on the built-in hash function
changes.

So, I’ve just run the build step, and I’m going to run my program.

Initially, the reference count is 3.

Each time we enter do_hashtable_stuff and instantiate a new hash
table that owns a reference to the builtin hash function,
the reference count on that function object increases by one -- to 4.

And each time do_hashtable_stuff completes, the hash table that
initialized inside goes out of scope.
The reference count on the *hash table* drops to 0, triggering the
deallocation function for hash tables.

Forgetting to PyDECREF

static void

HashTablePyObject_dealloc(HashTablePyObject* self)

{

 Py_XDECREF(self->hash_func);

 if (self->hashtable != NULL) {

 self->ob_type->tp_free((PyObject*)self);

 }

}

This function.

Which triggers a PyDECREF on the built-in hash function object.

So after calling do_hashtable_stuff a couple of times, we still just
have a reference count of 3 on the builtin hash function!

Forgetting to PyDECREF

static void

HashTablePyObject_dealloc(HashTablePyObject* self)

{

 // Py_XDECREF(self->hash_func);

 if (self->hashtable != NULL) {

 self->ob_type->tp_free((PyObject*)self);

 }

}

But let’s just say we had forgotten to decrease that ref count.

Forgetting to PyDECREF -- demo

So, I’ve just run the build step -- removing that PyDECREF, and I’m
going to run the program again.

Initially, the reference count is still 3.

Each time we enter do_hashtable_stuff and instantiate a new hash
table owning a reference to the builtin hash function, the reference
count on the function object increases by one.

And each time do_hashtable_stuff completes, its hash table goes
out of scope, the reference count on the *hash table* drops to 0,
and its deallocation function is called.

But nowhere did we release the reference on the built-in hash
function.

So after calling do_hashtable_stuff a couple of times, the reference
count on the builtin hash function has increased from 3 to 6.

Even though the objects that owned those last three references
have themselves been freed.

This is a memory leak!

Those three extra references were owned by objects that Python
has cleaned up.

They no longer exist, so we’ve lost our opportunity to signal to
Python that those references are no longer needed.

The reference count can never drop to 0, so Python will never
remove the function object from memory.

Now, we’re talking about the built-in hash function here -- so it’s not
like we even really want it removed from memory.
But imagine a more memory-intensive object, and a long-running
program that created tons of these objects that could never be
cleaned up -- eventually, this type of error will become a problem.

https://media.makeameme.org/created/memory-leaks-memory.jpg

So I added back that PyDECREF and rebuilt my program...

http://treasure.diylol.com/uploads/post/image/409955/resized_all-
the-things-meme-generator-fix-all-the-memory-leaks-ed0d0c.jpg

It’s useable!
>>> def my_awesome_python_hash(obj):

...

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

After all that, I finally had a module that worked well enough!

So I wrote my very own Python hash function.

>>> def my_awesome_python_hash(obj):

 if isinstance(obj, int):

 return obj*2654435761 % 2**32

 if isinstance(obj, float):

 return int(math.ceil(obj*2654435761 % 2**32))

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

It’s useable!

If the item to hash is an int or a float, it does this one thing I found
suggested on SO.

>>> def my_awesome_python_hash(obj):

 if isinstance(obj, int):

 return obj*2654435761 % 2**32

 if isinstance(obj, float):

 return int(math.ceil(obj*2654435761 % 2**32))

 else:

 ord3 = lambda x : '%.3d' % ord(x)

 return int(''.join(map(ord3, obj)))

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

It’s useable!

Else, we clearly must be hashing a string, so it does this other thing I
found suggested on Stack Overflow. Awesome.

>>> def my_awesome_python_hash(obj):

 print "Python: -> now hashing " + str(obj)

 if isinstance(obj, int):

 return obj*2654435761 % 2**32

 if isinstance(obj, float):

 return int(math.ceil(obj*2654435761 % 2**32))

 else:

 ord3 = lambda x : '%.3d' % ord(x)

 return int(''.join(map(ord3, obj)))

>>> hashtable.HashTable(hash_func=my_awesome_python_hash)

It’s useable!

Plus, I’ve included a print statement -- prefixed by the word
“Python” -- so we can see when this function is called.

I’ve also added more print statements to the C wrapper module and
my original C library, which are prefixed by their source.

It’s useable! -- demo

So here I’ve started an iPython repl with that awesome hash function loaded.
We can import the hashtable module -- and we see debug statements from C
module initialization function.

Now I’m going to instantiate a new hashtable object, such that its
hash_function will be the awesome hash function from before.
Via the C module, the inner C library is put to work -- mallocing space and
creating our data structure.

Let’s look at the new hashtable -- it’s empty, great. Next, let’s set some values.
We see the C module’s “set” function is calling the function that I wrote in
Python to get the hash value of our key, then coordinating with the C library to
actually add the key-value pair.

Set some more items. Hey look -- the C library has taken care of resizing! So
that’s what our hash table now looks like -- It’s a lot bigger.

And the hash table part actually works -- we can look up the value associated
with “pi”. We can remove it.
And if we try to look “pi” up again, the C library can’t find it and the C module

returns None.

When I exit the shell and the deallocation function from the module is called,
and the library does the heavy-hitting of actually freeing the memory.

So I’ve got the Python repl calling the functions from my C module,
and the C code executing this hash function that I wrote in Python,
and ... anyway, I thought it was pretty cool.

Questions?

scdgrapefruit@gmail.com

https://xkcd.com/353/

Sources
Yak: https://en.wikipedia.org/wiki/Yak

Hashtable illustrations:

https://commons.wikimedia.org/w/index.php?curid=6471915

https://commons.wikimedia.org/wiki/File:Hash_table_5_0_1_1_1_1_1_LL.svg

Linked List illustrations:

http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg

http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png

Reference counting illustration: http://rypress.com/tutorials/objective-c/media/memory-management/reference-counting.png
Snprintf poster: http://natashenka.ca/posters/

Memes:
http://img.memecdn.com/magic-cat_o_1585787.jpg
http://treasure.diylol.com/uploads/post/image/409955/resized_all-the-things-meme-generator-fix-all-the-memory-leaks-

ed0d0c.jpg
https://media.makeameme.org/created/memory-leaks-memory.jpg
https://xkcd.com/353/

Tutorials:

http://starship.python.net/crew/arcege/extwriting/pyext.html

https://docs.python.org/2/extending/extending.html

https://en.wikipedia.org/wiki/Yak
https://commons.wikimedia.org/w/index.php?curid=6471915
https://commons.wikimedia.org/w/index.php?curid=6471915
https://commons.wikimedia.org/wiki/File:Hash_table_5_0_1_1_1_1_1_LL.svg
https://commons.wikimedia.org/wiki/File:Hash_table_5_0_1_1_1_1_1_LL.svg
http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg
http://4.bp.blogspot.com/-ZQub4l3oliM/UfKzmX88ofI/AAAAAAAACQw/uIdj4ZF1Y4Y/s640/Link-list.jpg
http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png
http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2013/04/array5b.png
http://rypress.com/tutorials/objective-c/media/memory-management/reference-counting.png
http://natashenka.ca/posters/
http://img.memecdn.com/magic-cat_o_1585787.jpg
http://img.memecdn.com/magic-cat_o_1585787.jpg
http://treasure.diylol.com/uploads/post/image/409955/resized_all-the-things-meme-generator-fix-all-the-memory-leaks-ed0d0c.jpg
http://treasure.diylol.com/uploads/post/image/409955/resized_all-the-things-meme-generator-fix-all-the-memory-leaks-ed0d0c.jpg
http://treasure.diylol.com/uploads/post/image/409955/resized_all-the-things-meme-generator-fix-all-the-memory-leaks-ed0d0c.jpg
https://media.makeameme.org/created/memory-leaks-memory.jpg
https://media.makeameme.org/created/memory-leaks-memory.jpg
https://xkcd.com/353/
https://xkcd.com/353/
http://starship.python.net/crew/arcege/extwriting/pyext.html
http://starship.python.net/crew/arcege/extwriting/pyext.html
https://docs.python.org/2/extending/extending.html
https://docs.python.org/2/extending/extending.html

