

Per Python ad Astra

Juan Luis Cano @astrojuanlu
EuroPython @Bilbao – 2016-07-20

Who is this guy

● Almost aerospace engineer
● Python developer in finance at Indizen for

BBVA
● Mostly self-taught programmer (some

Fortran 90 at the University)
● Passionate about open culture – source,

hardware, science
● Chair of Python Spain non-profit and

organizer of Python Madrid monthly
meeting

Orbiting baseballs

...and Newton’s cannonball

What is Astrodynamics then?

Physics > Mechanics > Celestial Mechanics >
Astrodynamics

“A branch of Mechanics (itself a branch of
Physics) that studies practical problems

concerning the motion of human-made objects
trough space”

Warning: This is rocket science!

Two-body problem

● Main problem in Celestial Mechanics
– Two point masses
– Only gravitational force

considered
● The two motions are now decoupled!

Kepler problem

● It’s the initial value problem (IVP) of the two-body problem,
also known as propagation

● Statement: determine the position and velocity of a body in a
specified moment in time, given its state in a previous moment

● For elliptic orbits:

Lambert problem

● It’s the boundary value problem (BVP) of the two-body
problem

● Statement: determine the trajectory between two
positions to be traveled between two moments in time

● In the earliest phase we can assume that planets are
point masses and consider only Sun’s gravity (“patched
conic approximation”)

poliastro: Astrodynamics in Python
● Pure Python, accelerated with numba
● MIT License (permissive)
● Physical units handling (thanks to astropy)
● Analytical and numerical orbit propagation
● Conversion between position/velocity, classical and

equinoctial orbital elements
● Simple 2D trajectory plotting (thanks to matplotlib)
● Hohmann and bielliptic maneuvers computation
● Initial orbit determination (Lambert problem)
● Planetary ephemerides through SPK SPICE kernels

(thanks to jplephem)

astropy: Astronomy in Python

● Common library for Astronomy projects in Python
– Physical units (astropy.units): static typing for

engineers �

– Dates and times (astropy.time): time vectors, conversion
to Julian dates (JD), SOFA routines

– Reference systems conversion (astropy.coordinates)

● Other: cosmological computations
(astropy.cosmology), FITS data (astropy.io.fits)

jplephem: planetary ephemerides

● NASA and JPL provide planetary
positions (ephemerides) with
great accuracy along broad time
ranges (100s or 1000s years) in a
binary format (SPK kernels)

● jplephem, by Brandon Rhodes♥,
reads SPK files

♥Otras bibliotecas: python-sgp4, python-skyfield

Algorithms in compiled languages

● Most analysis require solving these
problems thousands of times
– Orbital groundtracks
– Launch window opportunities
– Trajectory optimization

● Online: Fortran, C, MATLAB, Java
– Pros: Good performance
– Cons: Poorly written, no testing, works-on-

my-computer state, wrapping

numba: JIT for numerical Python

● numba is a BSD licensed, just-in-time compiler for
numerical Python code

● Optimized to work with NumPy arrays
● Support for a (expanding) subset of the language

(highly dynamical features tend to hurt performance)
● Compiles to LLVM, hence leveraging its power to this

powerful toolset
● Support for GPUs too!

The results against Fortran

This is PYTHON!

The journey of Juno

https://www.youtube.com/watch?v=sYp5p2oL51g

https://www.youtube.com/watch?v=sYp5p2oL51g

Conclusions

● Python not only rocks as a language: it can be fast
enough using some tricks

● The ecosystem of libraries is simply awesome and super
high quality

● Several things missing in poliastro: 3D plotting, better
APIs

● Open development and good documentation make
progress and collaboration accessible to anyone

Gracias a todos
Eskerrik asko

Keep on dreaming

@astrojuanlu
hello@juanlu.space

