
Planning for the worst
shit happens

Numberly

@r4mnes & @ultrabug

© Eric Fischer / Flickr

mongoDB

nginx

Flask app

mongoDB

nginx

Flask app

I see dead backends

● Burning server
○ Replica set (master / backup failover)

● No more...
○ RAM (kill on consumption threshold, cgroups)
○ Disk (RAID, distributed FS)

● Server overload
○ monitoring
○ more servers (horizontal scaling)

mongoDB

nginx

Flask app

Another
possibility

Unreachable backends

● SysAdmin guy tripped over the cables
○ Hello Kitty forfeit

● Switch failure
○ Network bonding / LACP

nginx
● Handle backend HTTP errors
● Serve from cache on upstream HTTP error

Flask app
● Stale cache
● Spooling / task deferral / message queuing

Fail proof stack & code

Clustering!

mongoDB
master

nginx

Flask app

mongoDB
slave

nginx

Flask app

load balancer

mongoDB
master

nginx

Flask app

mongoDB
master

nginx

Flask app

load balancer

mongoDB
master

nginx

Flask app

mongoDB
slave

nginx

Flask app

load balancer(s)
There’s still a
SPOF here :)

Okay. So, what if your DATACENTER burns?

Ops

● Multiple datacenters / availability zones
● Remote backups (test them)

IP routing / connectivity

● Multiple datacenter BGP / Anycast
● DNS health checking (route53)

Application design

● Geo distributed apps

Real world
problems

Real world problem #1
Hey ramnes, the client says he
can’t authenticate on the website!
Something’s wrong!

[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth
[200 OK] GET /auth

That sounds bad.
Let me check logs…

types stuff
much busy

user@webserver$ cat app.log

user@desktop$ ssh webserver

Well, the client is wrong

Oh, okay…
goes away

(Great)

Real world problem #1
Ramnes, something’s really
wrong! The client still can’t
connect!

...
@app.route(“/auth”)
def auth():
 “““Old code.

 :author: Someone who left the
 company two years ago.
 ”””
 ...
 try:
 user.authenticate()
 except Exception as e:

 try:
 send_email(e)
 return 500, “ERROR!”
 except:
 pass
 return 200, “OK”

Alright.
Let me check code…

types stuff
much busy

user@desktop$ cat app.py

That function raises an Exception if the mail server is down.

Real world problem #1
conclusions

1. Know your code, refactorize when needed
(even if someone else wrote it and that you don’t like his coding style)

2. “Errors should never pass silently”
(Zen of Python)

PS: Don’t always blame ops guys.
The DevOps thing is great, you should try it.

Real world problem #2

Weird graph showing an abnormally
high maximum processing time

Real world problem #2

And then one day…

Real world problem #2

root@server$ cat /etc/hosts
192.168.12.40 database-server-1
192.168.12.41 database-server-2
192.168.24.30 database-server-3
192.168.24.31 database-server-4

solution

So it doesn’t overload your DNS server when your code
tries to access your database with its domain name

Local DNS resolution

