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ABOUT ME

▸ Software Engineer (R&D), CLIQZ GmbH. 

▸ Building a web scale search engine, 
optimized for German speaking 
community. 

▸ Areas: Large scale Information Retrieval, 
Machine Learning, Deep Learning and 
Natural Language Processing. 

▸ Mozilla Representative (2012 - Present)
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SEARCH@CLIQZ: IN-BROWSER SEARCH
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TRADITIONAL SEARCH

▸ Traditional Search is based on creating a vector model of 
the document [TF-IDF etc.] and searching for relevant 
terms of the query within the same. 

▸ Aim: To give the most accurate document ranked in an 
order based on several parameters.
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OUR SEARCH STORY

▸ Search @ Cliqz based on matching a user query to a query in our 
index. 

▸ Construct alternate queries and search them simultaneously. 
Query Similarity based on the words matched and ratio of match. 

▸ Broadly, our Index:  

▸ query: [<url_id1>, <url_id2>, <url_id3>, <url_id4>] 

▸ url_id1 =  "+0LhKNS4LViH\/WxbXOTdOQ=="     
{“url":"http://www.uefa.com/trainingground/skills/video/
videoid=871801.html"}
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SEARCH PROBLEM - OVERVIEW

▸ Once a user queries search system, two steps happen for an effective search 
result: 

▸ RECALL: Get best candidate pages from index which closely represents query. 

▸ @Cliqz: Come up with (~10k+) pages using all techniques from index (1.8+ 
B pages) that are most appropriate pages w.r.t query. 

▸ RANKING: Rank the candidate pages based on different ranking signals. 

▸ @Cliqz: Several steps. After first recall of ~10,000 pages, pre_rank prunes 
this list down to 100 good candidate pages.  

▸ Final Ranking prunes this list of 100 to Top 3 Results. 

▸ Given a user Query, find 3 good pages out of ~2 Billion Pages in Index!
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ENTERS DEEP LEARNING

▸ Queries  defined as a fixed dimensional vector of floating point values. Ex. 
100 dimensions 

▸ Distributed Representation: Words that appear in the same contexts 
share semantic meaning. The meaning of the Query is defined by the 
floating point numbers distributed in the vector. 

▸ Query Vectors are learned in an unsupervised manner. Where we focus 
on the context of words in sentences or queries and learn the same. For 
learning word representations, we employ a Neural Probabilistic 
Language Model (NP-LM). 

▸ Similarity between queries are measured as cosine or vector distance 
between pair of query vectors We then get “closest queries” to a user 
query and fetch pages (Recall). 
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EXAMPLE QUERY: “SIMS GAME PC DOWNLOAD”
▸ "closest_queries": [ 

▸     [ "2 download game pc sims”,  0.10792562365531921], 

▸     [ "download full game pc sims”, 0.16451804339885712], 

▸     [ "download free game pc sims”, 0.1690218299627304], 

▸     [ "game pc sims the", 0.17319737374782562], 

▸     [ "2 game pc sims",  0.17632317543029785], 

▸     ["3 all download game on pc sims”, 0.19127938151359558] 

▸     ["download pc sims the", 0.19307053089141846], 

▸     ["3 download free game pc sims", 0.19705575704574585], 

▸     ["2 download free game pc sims", 0.19757266342639923], 

▸     ["game original pc sims", 0.1987953931093216], 

▸     ["download for free game pc sims", 0.20123696327209473]  

▸ ………]
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LEARNING DISTRIBUTED REPRESENTATION OF WORDS

▸ We use un-supervised deep learning techniques, to learn	a	word	
representa-on	C(w)	which is a con-nuous	vector	and is both 
syntactically and semantically similar.  

▸ More precisely, we learn a continuous representation of words 
and would like the distance || C(w) - C(w’) || to reflect meaningful 
similarity between words w and w’. 

▸ vector('king') - vector('man') + vector('woman') is close to 
vector(‘queen') 

▸ We use Word2Vec to learn word and their corresponding vectors.
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WORD2VEC DEMYSTIFIED

▸ Mikolov T. et al. 2013, proposes two novel model 
architectures for computing continuous vector 
representations of words from very large datasets. They are: 

▸ Continuous Bag of Words (cbow) 

▸ Continuous Skip Gram (skip) 

▸ Word2Vec focuses on distributed representations learned 
by neural networks.  Both models are trained using 
stochastic gradient descent and back propagation.
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WORD2VEC DEMYSTIFIED
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NEURAL PROBABILISTIC LANGUAGE MODELS

▸ NP-LM use Maximum Likelihood principle to maximize the probability of the next word 
wt (for "target") given the previous words h (for "history") in terms of a soft-max 
function: 
 
 
 
score(w_t,h) computes the compatibility of word w_t with the context h (a dot product). 
We train this model by maximizing its log-likelihood on the training set, i.e. by 
maximizing:  
 
 

▸ Pros:  Yields a properly normalized probabilistic model for language modeling. 

▸ Cons: Very expensive, because we need to compute and normalize each probability 
using the score for all other V words w′ in the current context h, at every training step.
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NEURAL PROBABILISTIC LANGUAGE MODELS

▸ A properly normalized probabilistic model for language 
modeling.
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WORD2VEC DEMYSTIFIED

▸ Word2Vec models are  trained using binary classification 
objective (logistic regression) to discriminate the real 
target words wt from k imaginary (noise) words w~, in the 
same context. 

▸ For CBOW:
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WORD2VEC DEMYSTIFIED

▸ The objective for each example is to maximize: 

▸ Where Qθ(D=1|w,h) is the binary logistic regression probability under the model of 
seeing the word w in the context h in the dataset D, calculated in terms of the 
learned embedding vectors θ. 

▸ In practice, we approximate the expectation by drawing k contrastive words from 
the noise distribution. 

▸  This objective is maximized when the model assigns high probabilities to the real 
words, and low probabilities to noise words (Negative Sampling). 

▸ Performance: Way more faster. Computing loss function scales to only the number 
of noise words that we select “k” and not to entire Vocabulary “V”.
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EXAMPLE: SKIP-GRAM MODEL

▸ d: “the quick brown fox jumped over the lazy dog” 

▸ Define context window size: 1. Dataset of (context, target): 

▸ ([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ... 

▸ Recall, skip-gram inverts contexts and targets, and tries to predict each 
context word from its target word. So, task becomes to predict 'the' and 
'brown' from 'quick', 'quick' and 'fox' from 'brown', etc.  Dataset of (input, 
output) pairs becomes: 

▸ (quick, the), (quick, brown), (brown, quick), (brown, fox), ... 

▸ Objective function defined over entire dataset. We optimize this with SGD 
using one example at a time. (or, using a mini-batch (16<=batch_size< =512))
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EXAMPLE: SKIP-GRAM MODEL

▸ Say, at training time t, we see training case: (quick, the) 

▸ Goal: Predict “the” from “quick” 

▸ Next, we select “num_noise” number of noisy (contrastive) examples 
by drawing from some noise distribution, typically the unigram 
distribution, P(w). For simplicity let's say num_noise=1 and we select 
“sheep” as a noisy example.  

▸ Next, we compute “loss” for this pair of observers and noisy examples. 
i.e. Objective at time step “t” becomes: 

▸ Goal: Update θ (embedding parameters), to maximize this 
objective function.
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EXAMPLE: SKIP-GRAM MODEL

▸ For maximizing this loss function we obtain a gradient or 
derivative w.r.t embedding parameter θ. i.e. 

▸ We then perform an update to the embeddings by taking 
a small step in the direction of the gradient.  

▸ We repeat this process over the entire training set, this has 
the effect of 'moving' the embedding vectors around for 
each word until the model is successful at discriminating 
real words from noise words.
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VISUALIZING WORD 
EMBEDDINGS
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WORD VECTORS CAPTURING SEMANTIC INFORMATION
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WORD VECTORS IN 2D

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
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QUERY VECTOR FORMATION - “SIMS GAME PC DOWNLOAD”
▸ STEP 1: Word2Vec training gives unique individual vectors for 

each word. [dimensionality = 100] 

▸ sims: [0.01 ,0.2, ……………..…., 0.23] 

▸ game : [0.21 ,0.12, ……………..…., 0.123] 

▸ pc: [ -0.71 ,0.52, ……………..…., -0.253] 

▸ download: [0.31 ,-0.62, ……………..…., 0.923]                     

▸ STEP 2: Get the term relevance for each word in the query. 

▸ ‘terms_relevance’: {'sims': 0.9015615463502331, 'pc': 
0.4762325748412917, 'game': 0.6077838963329699, 
'download': 0.5236977938865315}
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QUERY VECTOR FORMATION - “SIMS GAME PC DOWNLOAD”
▸ STEP 3: Next, we calculate a centroid (or Average) of the vectors 

(relevance-based) for each  of the words in query. This resulting 
vector represents our Query. Simple, Weighted Average Example: 

▸ In [5]: w_vectors = [[1,1,1],[2,2,2]] 

▸ In [6]: weights= [1, 0.5] 

▸ In [7]: numpy.average(w_vectors, axis=0, 
weights=weights) 

▸ array([ 1.33333333,  1.33333333,  1.33333333]) 

▸ In the end,  

▸ sims game pc download: [ -0.171 ,0.252, ……………..…., -0.653] 
{dimensionality remains 100}
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TERMS RELEVANCE

▸ Two modes to compute Term Relevance: 

▸ Absolute: tr_abs(word) = word_stats(‘tf5df') / word_stats['df']) 

▸ Relative: tr_rel(word) = log(N/n) * absolute,  

▸ where, N is the number of page models in the index and n = df  

▸ tf5df, df, N  are all data dependent, which we compute for each data refresh. 

▸ For our example, word_stats look like this: 

▸ ({'sims': {'f': 3734417, 'df': 481702, 'uqf': 1921554, 'tf1df': 288718, 
'tf2df': 369960, 'tf3df': 403840, 'tf5df': 434284}, 'pc': {'f': 20885669, 
'df': 3297244, 'uqf': 11216714, 'tf1df': 288899, 'tf2df': 604095, 
'tf3df': 967704, 'tf5df': 1570255}, 'game': {'f': 11431488, 'df': 
2412879, 'uqf': 5354115, 'tf1df': 253090, 'tf2df': 597603, 'tf3df': 
979049, 'tf5df': 1466509}, 'download': {'f': 50131109, 'df': 11402496, 
'uqf': 26644950, 'tf1df': 430566, 'tf2df': 1147760, 'tf3df': 2584554, 
'tf5df': 5971462}}
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QUERY VECTOR INDEX 

▸ We perform this vector generation for top five queries 
leading to all pages in our data. 

▸ We collect, Top Queries for each page from PageModels 

▸ ~465 Million+ Queries representing all pages in our index 

▸ Learn Query Vectors for them. Size: ~700 GB on disk. 

▸ How do we get similar queries: User query vs 465 Million Queries?
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FINDING CLOSEST QUERIES

▸ Brute Force: User Query vs 465M Queries — Too Too Slow!  

▸ Hashing Techniques - Not very accurate for vectors. — Vectors are 
semantic!  

▸ The solution required:  

▸ Application of cosine similarity metric. 

▸ Scale to 465 million Query Vectors. 

▸ Takes ~10 milli-seconds or less! 

▸ Approximate Nearest Neighbor Vector Model to the rescue!
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ANNOY (APPROXIMATE NEAREST NEIGHBOR MODEL)

▸ We use “Annoy” library (C++ & python wrapper) to build the Approximate 
nearest neighbor models. Annoy is used in production at Spotify. 

▸ We can't train on all 465M queries at once, too slow. 

▸ Train: 10 models or 46+ M queries each 

▸ Number of Trees: 10  (explained next) 

▸ Size of Models: 27 GB per shard [10 models – 270 GB+] [stored in RAM] 

▸ Query all 10 shards of the cluster at runtime. Sort them based on cos. similarity. 

▸ Get top 55 nearest queries to user query and  fetch pages related to nearest 
queries.
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ANATOMY OF ANNOY
▸ Goal: Find the nearest points to any query point in sub-

linear time. 

▸ Build a Tree,  

▸ queries in O(log n)
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ANATOMY OF ANNOY
▸ Pick two points randomly, split the hyper-space.
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ANATOMY OF ANNOY
▸ Split Recursively
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ANATOMY OF ANNOY
▸ Split Recursively 

▸ Tiny Binary Tree  
appears.
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ANATOMY OF ANNOY
▸ Keep Splitting
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ANATOMY OF ANNOY
▸ End up with Binary Tree Partitioning the Space. 

▸ Nice thing : Points that are close to each other in the space 
are more likely to be close to each other in the tree
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ANATOMY OF ANNOY
▸ Searching for a point
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ANATOMY OF ANNOY
▸ Searching for a point: Path down the binary tree. 

▸ We end up with: 7 neighbors..… Cool!
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ANATOMY OF ANNOY
▸ What if: We want more than 7 neighbors? 

▸ Use: Priority Queue [Traverse both sides of split - threshold 
based]
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ANATOMY OF ANNOY
▸ Some of the nearest neighbors are actually outside of this 

leaf polygon! 

▸ Use: Forest of Trees
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TEXT

STORING WORD EMBEDDINGS & QUERY-INTEGER MAPPINGS

▸ Word2Vec gives a word - vector pair and Annoy stores 
query as integer index in its model.  

▸ These mappings are stored in our key-value index “keyvi”, 
developed in-house @ CLIQZ, which also takes care of our 
entire search index. 

www.keyvi.org

http://www.keyvi.org
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RESULTS

▸ Much richer set of candidate pages after first fetching step from 
index, with higher possibility of expected page(s) being among 
them.  

▸ The queries are now matched (in real-time) using a cosine vector 
similarity between query vectors as well as using classical Cliqz - IR 
techniques. 

▸ Overall, the recall improvement from previous release is ~ 5% to 7% 

▸ The translated improvement in precision-value scores is between: ~ 
0.5% to 1% 
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CONCLUSION

▸ Query embeddings is a unique way to improve recall, which 
is different from conventional web search techniques. 

▸ Current work:  

▸ Ranking changes to include: Query/Page Similarity Metric. 

▸ Query to Page Similarity using Document Vectors  

▸ Improving search system for pages which are not linked to 
queries. 

▸ And lots more … 



YOU SHALL KNOW A WORD BY 
THE COMPANY IT KEEPS.

John Rupert Firth(1957)

THANK YOU


