
QUERY EMBEDDINGS: 
WEB SCALE SEARCH POWERED BY DEEP
LEARNING AND PYTHON
Ankit Bahuguna
Software Engineer (R&D), Cliqz GmbH
ankit@cliqz.com

mailto:ankit@cliqz.com

QUERY EMBEDDINGS

ABOUT ME

▸ Software Engineer (R&D), CLIQZ GmbH.

▸ Building a web scale search engine,
optimized for German speaking
community.

▸ Areas: Large scale Information Retrieval,
Machine Learning, Deep Learning and
Natural Language Processing.

▸ Mozilla Representative (2012 - Present)

2

Ankit Bahuguna
(@codekee)

QUERY EMBEDDINGS

SEARCH@CLIQZ: IN-BROWSER SEARCH

QUERY EMBEDDINGS

TRADITIONAL SEARCH

▸ Traditional Search is based on creating a vector model of
the document [TF-IDF etc.] and searching for relevant
terms of the query within the same.

▸ Aim: To give the most accurate document ranked in an
order based on several parameters.

5

QUERY EMBEDDINGS

OUR SEARCH STORY

▸ Search @ Cliqz based on matching a user query to a query in our
index.

▸ Construct alternate queries and search them simultaneously.
Query Similarity based on the words matched and ratio of match.

▸ Broadly, our Index:

▸ query: [<url_id1>, <url_id2>, <url_id3>, <url_id4>]

▸ url_id1 = "+0LhKNS4LViH\/WxbXOTdOQ=="  
{“url":"http://www.uefa.com/trainingground/skills/video/
videoid=871801.html"}

6

QUERY EMBEDDINGS

SEARCH PROBLEM - OVERVIEW

▸ Once a user queries search system, two steps happen for an effective search
result:

▸ RECALL: Get best candidate pages from index which closely represents query.

▸ @Cliqz: Come up with (~10k+) pages using all techniques from index (1.8+
B pages) that are most appropriate pages w.r.t query.

▸ RANKING: Rank the candidate pages based on different ranking signals.

▸ @Cliqz: Several steps. After first recall of ~10,000 pages, pre_rank prunes
this list down to 100 good candidate pages.

▸ Final Ranking prunes this list of 100 to Top 3 Results.

▸ Given a user Query, find 3 good pages out of ~2 Billion Pages in Index!

7

QUERY EMBEDDINGS

ENTERS DEEP LEARNING

▸ Queries defined as a fixed dimensional vector of floating point values. Ex.
100 dimensions

▸ Distributed Representation: Words that appear in the same contexts
share semantic meaning. The meaning of the Query is defined by the
floating point numbers distributed in the vector.

▸ Query Vectors are learned in an unsupervised manner. Where we focus
on the context of words in sentences or queries and learn the same. For
learning word representations, we employ a Neural Probabilistic
Language Model (NP-LM).

▸ Similarity between queries are measured as cosine or vector distance
between pair of query vectors We then get “closest queries” to a user
query and fetch pages (Recall).

8

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

QUERY EMBEDDINGS

EXAMPLE QUERY: “SIMS GAME PC DOWNLOAD”
▸ "closest_queries": [

▸ ["2 download game pc sims”, 0.10792562365531921],

▸ ["download full game pc sims”, 0.16451804339885712],

▸ ["download free game pc sims”, 0.1690218299627304],

▸ ["game pc sims the", 0.17319737374782562],

▸ ["2 game pc sims", 0.17632317543029785],

▸ ["3 all download game on pc sims”, 0.19127938151359558]

▸ ["download pc sims the", 0.19307053089141846],

▸ ["3 download free game pc sims", 0.19705575704574585],

▸ ["2 download free game pc sims", 0.19757266342639923],

▸ ["game original pc sims", 0.1987953931093216],

▸ ["download for free game pc sims", 0.20123696327209473]

▸ ………]

9

QUERY EMBEDDINGS

LEARNING DISTRIBUTED REPRESENTATION OF WORDS

▸ We use un-supervised deep learning techniques, to learn	a	word	
representa-on	C(w)	which is a con-nuous	vector	and is both
syntactically and semantically similar.

▸ More precisely, we learn a continuous representation of words
and would like the distance || C(w) - C(w’) || to reflect meaningful
similarity between words w and w’.

▸ vector('king') - vector('man') + vector('woman') is close to
vector(‘queen')

▸ We use Word2Vec to learn word and their corresponding vectors.

10

QUERY EMBEDDINGS

WORD2VEC DEMYSTIFIED

▸ Mikolov T. et al. 2013, proposes two novel model
architectures for computing continuous vector
representations of words from very large datasets. They are:

▸ Continuous Bag of Words (cbow)

▸ Continuous Skip Gram (skip)

▸ Word2Vec focuses on distributed representations learned
by neural networks. Both models are trained using
stochastic gradient descent and back propagation.

11

https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

QUERY EMBEDDINGS

WORD2VEC DEMYSTIFIED

12

T. Mikolov et .al, Efficient Estimation of Word Representations in Vector Space http://arxiv.org/pdf/1301.3781.pdf

http://arxiv.org/pdf/1301.3781.pdf

QUERY EMBEDDINGS

NEURAL PROBABILISTIC LANGUAGE MODELS

▸ NP-LM use Maximum Likelihood principle to maximize the probability of the next word
wt (for "target") given the previous words h (for "history") in terms of a soft-max
function: 
 
 
 
score(w_t,h) computes the compatibility of word w_t with the context h (a dot product).
We train this model by maximizing its log-likelihood on the training set, i.e. by
maximizing:  
 
 

▸ Pros: Yields a properly normalized probabilistic model for language modeling.

▸ Cons: Very expensive, because we need to compute and normalize each probability
using the score for all other V words w′ in the current context h, at every training step.

13

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

NEURAL PROBABILISTIC LANGUAGE MODELS

▸ A properly normalized probabilistic model for language
modeling.

14

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

WORD2VEC DEMYSTIFIED

▸ Word2Vec models are trained using binary classification
objective (logistic regression) to discriminate the real
target words wt from k imaginary (noise) words w~, in the
same context.

▸ For CBOW:

15

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

WORD2VEC DEMYSTIFIED

▸ The objective for each example is to maximize:

▸ Where Qθ(D=1|w,h) is the binary logistic regression probability under the model of
seeing the word w in the context h in the dataset D, calculated in terms of the
learned embedding vectors θ.

▸ In practice, we approximate the expectation by drawing k contrastive words from
the noise distribution.

▸ This objective is maximized when the model assigns high probabilities to the real
words, and low probabilities to noise words (Negative Sampling).

▸ Performance: Way more faster. Computing loss function scales to only the number
of noise words that we select “k” and not to entire Vocabulary “V”.

16

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

EXAMPLE: SKIP-GRAM MODEL

▸ d: “the quick brown fox jumped over the lazy dog”

▸ Define context window size: 1. Dataset of (context, target):

▸ ([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

▸ Recall, skip-gram inverts contexts and targets, and tries to predict each
context word from its target word. So, task becomes to predict 'the' and
'brown' from 'quick', 'quick' and 'fox' from 'brown', etc. Dataset of (input,
output) pairs becomes:

▸ (quick, the), (quick, brown), (brown, quick), (brown, fox), ...

▸ Objective function defined over entire dataset. We optimize this with SGD
using one example at a time. (or, using a mini-batch (16<=batch_size< =512))

17

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

EXAMPLE: SKIP-GRAM MODEL

▸ Say, at training time t, we see training case: (quick, the)

▸ Goal: Predict “the” from “quick”

▸ Next, we select “num_noise” number of noisy (contrastive) examples
by drawing from some noise distribution, typically the unigram
distribution, P(w). For simplicity let's say num_noise=1 and we select
“sheep” as a noisy example.

▸ Next, we compute “loss” for this pair of observers and noisy examples.
i.e. Objective at time step “t” becomes: 

▸ Goal: Update θ (embedding parameters), to maximize this
objective function.

18

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

EXAMPLE: SKIP-GRAM MODEL

▸ For maximizing this loss function we obtain a gradient or
derivative w.r.t embedding parameter θ. i.e.

▸ We then perform an update to the embeddings by taking
a small step in the direction of the gradient.

▸ We repeat this process over the entire training set, this has
the effect of 'moving' the embedding vectors around for
each word until the model is successful at discriminating
real words from noise words.

19

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

VISUALIZING WORD
EMBEDDINGS

20

QUERY EMBEDDINGS

WORD VECTORS CAPTURING SEMANTIC INFORMATION

21

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html

QUERY EMBEDDINGS

WORD VECTORS IN 2D

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

QUERY EMBEDDINGS

QUERY VECTOR FORMATION - “SIMS GAME PC DOWNLOAD”
▸ STEP 1: Word2Vec training gives unique individual vectors for

each word. [dimensionality = 100]

▸ sims: [0.01 ,0.2, ……………..…., 0.23]

▸ game : [0.21 ,0.12, ……………..…., 0.123]

▸ pc: [-0.71 ,0.52, ……………..…., -0.253]

▸ download: [0.31 ,-0.62, ……………..…., 0.923]

▸ STEP 2: Get the term relevance for each word in the query.

▸ ‘terms_relevance’: {'sims': 0.9015615463502331, 'pc':
0.4762325748412917, 'game': 0.6077838963329699,
'download': 0.5236977938865315}

23

QUERY EMBEDDINGS

QUERY VECTOR FORMATION - “SIMS GAME PC DOWNLOAD”
▸ STEP 3: Next, we calculate a centroid (or Average) of the vectors

(relevance-based) for each of the words in query. This resulting
vector represents our Query. Simple, Weighted Average Example:

▸ In [5]: w_vectors = [[1,1,1],[2,2,2]]

▸ In [6]: weights= [1, 0.5]

▸ In [7]: numpy.average(w_vectors, axis=0,
weights=weights)

▸ array([1.33333333, 1.33333333, 1.33333333])

▸ In the end,

▸ sims game pc download: [-0.171 ,0.252, ……………..…., -0.653]
{dimensionality remains 100}

24

QUERY EMBEDDINGS

TERMS RELEVANCE

▸ Two modes to compute Term Relevance:

▸ Absolute: tr_abs(word) = word_stats(‘tf5df') / word_stats['df'])

▸ Relative: tr_rel(word) = log(N/n) * absolute,

▸ where, N is the number of page models in the index and n = df

▸ tf5df, df, N are all data dependent, which we compute for each data refresh.

▸ For our example, word_stats look like this:

▸ ({'sims': {'f': 3734417, 'df': 481702, 'uqf': 1921554, 'tf1df': 288718,
'tf2df': 369960, 'tf3df': 403840, 'tf5df': 434284}, 'pc': {'f': 20885669,
'df': 3297244, 'uqf': 11216714, 'tf1df': 288899, 'tf2df': 604095,
'tf3df': 967704, 'tf5df': 1570255}, 'game': {'f': 11431488, 'df':
2412879, 'uqf': 5354115, 'tf1df': 253090, 'tf2df': 597603, 'tf3df':
979049, 'tf5df': 1466509}, 'download': {'f': 50131109, 'df': 11402496,
'uqf': 26644950, 'tf1df': 430566, 'tf2df': 1147760, 'tf3df': 2584554,
'tf5df': 5971462}}

25

QUERY EMBEDDINGS

QUERY VECTOR INDEX

▸ We perform this vector generation for top five queries
leading to all pages in our data.

▸ We collect, Top Queries for each page from PageModels

▸ ~465 Million+ Queries representing all pages in our index

▸ Learn Query Vectors for them. Size: ~700 GB on disk.

▸ How do we get similar queries: User query vs 465 Million Queries?

26

QUERY EMBEDDINGS

FINDING CLOSEST QUERIES

▸ Brute Force: User Query vs 465M Queries — Too Too Slow!

▸ Hashing Techniques - Not very accurate for vectors. — Vectors are
semantic!

▸ The solution required:

▸ Application of cosine similarity metric.

▸ Scale to 465 million Query Vectors.

▸ Takes ~10 milli-seconds or less!

▸ Approximate Nearest Neighbor Vector Model to the rescue!

27

QUERY EMBEDDINGS

ANNOY (APPROXIMATE NEAREST NEIGHBOR MODEL)

▸ We use “Annoy” library (C++ & python wrapper) to build the Approximate
nearest neighbor models. Annoy is used in production at Spotify.

▸ We can't train on all 465M queries at once, too slow.

▸ Train: 10 models or 46+ M queries each

▸ Number of Trees: 10 (explained next)

▸ Size of Models: 27 GB per shard [10 models – 270 GB+] [stored in RAM]

▸ Query all 10 shards of the cluster at runtime. Sort them based on cos. similarity.

▸ Get top 55 nearest queries to user query and fetch pages related to nearest
queries.

28

https://github.com/spotify/annoy

https://github.com/spotify/annoy

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Goal: Find the nearest points to any query point in sub-

linear time.

▸ Build a Tree,

▸ queries in O(log n)

29

https://erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1/

https://erikbern.com/2015/09/24/nearest-neighbor-methods-vector-models-part-1/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Pick two points randomly, split the hyper-space.

30

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Split Recursively

31

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Split Recursively

▸ Tiny Binary Tree  
appears.

32

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Keep Splitting

33

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ End up with Binary Tree Partitioning the Space.

▸ Nice thing : Points that are close to each other in the space
are more likely to be close to each other in the tree

34

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Searching for a point

35

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Searching for a point: Path down the binary tree.

▸ We end up with: 7 neighbors..… Cool!

36

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ What if: We want more than 7 neighbors?

▸ Use: Priority Queue [Traverse both sides of split - threshold
based]

37

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

QUERY EMBEDDINGS

ANATOMY OF ANNOY
▸ Some of the nearest neighbors are actually outside of this

leaf polygon!

▸ Use: Forest of Trees

38

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces/

TEXT

STORING WORD EMBEDDINGS & QUERY-INTEGER MAPPINGS

▸ Word2Vec gives a word - vector pair and Annoy stores
query as integer index in its model.

▸ These mappings are stored in our key-value index “keyvi”,
developed in-house @ CLIQZ, which also takes care of our
entire search index.

www.keyvi.org

http://www.keyvi.org

QUERY EMBEDDINGS

RESULTS

▸ Much richer set of candidate pages after first fetching step from
index, with higher possibility of expected page(s) being among
them.

▸ The queries are now matched (in real-time) using a cosine vector
similarity between query vectors as well as using classical Cliqz - IR
techniques.

▸ Overall, the recall improvement from previous release is ~ 5% to 7%

▸ The translated improvement in precision-value scores is between: ~
0.5% to 1%

40

QUERY EMBEDDINGS

CONCLUSION

▸ Query embeddings is a unique way to improve recall, which
is different from conventional web search techniques.

▸ Current work:

▸ Ranking changes to include: Query/Page Similarity Metric.

▸ Query to Page Similarity using Document Vectors

▸ Improving search system for pages which are not linked to
queries.

▸ And lots more …

YOU SHALL KNOW A WORD BY
THE COMPANY IT KEEPS.

John Rupert Firth(1957)

THANK YOU

