
STX NEXT

talented developers | flexible teams | agile experts

RESTFUL API
BEST PRACTICES

By Malwina Nowakowska

Malwina Nowakowska

Developer

STX Next

Love Python

API

API

API

API

API

API
API

API

Special demo event

RESTful
API

„Representational State Transfer (REST) is a

style of software architecture for distributed

hypermedia systems such as the World Wide

Web”

Architectural constraints

Client-Server

Stateless

Cacheable

Uniform Interface

Layered System

Code on Demand (optional)

Client-Server

Stateless

Cacheable

Uniform Interface
1) Identifying the resource

2) Resource representation

3) Self-descriptive messages

4) Hypermedia as the engine of application state

Layered System

Code on Demand (optional)

Architectural properties

Performance

Scalability

Simplicity of interfaces

Modifiability of components to meet changing needs (even while the application is running)

Visibility of communication between components by service agents

Portability of components by moving program code with the data

Reliability is the resistance to failure at the system level in the presence of failures within

components, connectors, or data

RESTful APIs

Web service APIs that adhere to the REST architectural

constraints are called RESTful APIs

Richardson REST Maturity Model

Resources

 /tickets

 /events

 /users

 /baskets

 /event_venues

 /tickets

 /events

 /users

 /baskets

 /event_venues

Nouns

 /tickets

 /events

 /users

 /baskets

 /event_venues

Nouns

Plural

 /tickets

 /events

 /users

 /baskets

 /event_venues

Nouns

Case
convention

Plural

Create POST

Read GET

Update PUT/PATCH

Delete DELETE

Create POST

Read GET

Update PUT/PATCH

Delete DELETE

GET /events - Read a list of events

GET /events/12 - Read a specific event

POST /events - Create a new event

PUT/PATCH /events/12 - Update event #12

DELETE /events/12 - Delete event #12

GET /events/12/prices - Read a list of event’s prices

GET /events/12/prices/5 - Read a specific event’s price

POST /events/12/prices - Create a new event’s price

PUT/PATCH /events/12/prices/5 - Update event’s price

DELETE /events/12/prices/5 - Delete event’s price

Related resource representations

Filtering

GET /events?state=active&category=music,comedy

Sorting

GET /events?sort=-date,name

Searching

GET /events?q=Madonna

Limiting response

GET /events?fields=(id,title,date,artist.name)

Actions

GET /search

POST /order/1234/sum

Versioning

https://my-site.com/api/v1

Accept: application/vnd.my-site.v3+json

Pagination

Range: events=0-30

/events?page=1

/events?page=1&per_page=50 limit=10&offset=30

Accept-Ranges: events 50

Content-Range: 0-10/1234

offset – limit / count

resource max

Link:
<https://api.github.com/user/repos?page=3&per_page=100>; rel="next",
<https://api.github.com/user/repos?page=50&per_page=100>; rel="last"

Content-Type: application/json

Accept: application/xml; application/json

Pretty print

HATEOAS

Documentation

Best practices

Thank you!

