SYSTEM TESTING WITH PYTEST AND
DOCKER-PY

http://creativecommons.org/licenses/by-nc-nd/4.0/

HELLO!

e Christie Wilson
o Senior Developer @ Demonware
o Team Lead: Test Tools
e Michael Tom-Wing
o Software Engineer 1in Test @ Demonware
o Focus on automation and quality

e We’re from Canada!

e Video Game Industry
e Online services for games

e Come see us in the vendor area!

GALI'DUTY

INFINITE WARFARE

COMMANDERNCTLUFFLES A /A
THE QUEST FOR QUALTTY

TESTING AT DEMONWARE 2011-201%

WHAT IS TESTING!

BEST PRACTICES FOR SYSTEM TESTING

PYTEST FIXTURES AND DOCKER-PY

TAKEAWAYS FOR DEV AND OPS

UNCE UPON A

SYSTEM TEST

TESTING AT DEMONWARE 2011-201%

DEMONWARE - 2011

DEMONWARE - RIP OTHER TESTING METHODS
Q

DEMONARE - 2016

@
~

=t

DEMONWARE - 2016

e Test Tools team

e Variety of tests
o Unit tests
o Integration tests
o System tests

WHAT IS TESTING!

WHATISTESTINGL WHY DO WE TEST?

WHY DO WE TEST!

@ To increase confidence in our software
e Avoid regressions
e Document behaviour

WHY DON'T WE TEST!

e NOT to find all the bugs i1n our software
e Will never find all bugs

TESTING + SOFTWARE QUALTTY

e Testing does not increase the quality of our software

e By the time our tests run our software 1is already buggy
o Introduce quality through requirements + design!

e But...
(
s

TESTING + SOFTWARE QUALTTY

e Tests provide metrics to let us reason about quality
o E.g. coverage, timing, # of logs

e Untested software 1is always VIEWED as lower quality

e Less information about the quality
(
> .\

LXAMPLE

Y
v

[CLIENT LIB J SERVICE DATABASE

~ 2~

m

HOW TO TESTIT

e Unit tests
e Integration tests
e System tests

UNTT TESTS

e Unit tests: ~100% coverage

e Integration tests
e System tests

CLIENT LIB

SERVICE

Y
]

DATABASE

~

INTEGRATION TESTS

e Unit tests: ~100% coverage
e Integration tests: service <-> DB
e System tests

Y

N
[CLIENT LIB } SERVICE DATABASE

~

SYSTEM TESTS

Test the entire system

PROS CONS

e Most valuable e Slowest
e Most likely to find bugs e Hardest to maintain

SYSTEM TESTS

e Unit tests: ~100% coverage
e Integration tests: service <-> DB
e System tests: happy path, few simple failures

[CLIENT LIB]

SERVICE

(DATABASE 1

BEST PRACTICES FOR SYSTEM TESTING

BEST PRACTICES

e Use fresh state between tests

e Will help avoid dependencies between tests
o e.g. test ordering shouldn’t affect their outcomes

e Docker helps make this very easy!

BEST PRACTICES

e Ensure tests can run on build servers and locally
o Ease the burden for writing and running tests

e Restrict the test environments you’ll support
o e.g. Linux, OSX, toaster

BEST PRACTICES

e Tests should clean up after themselves
e Fail fast
e Fail informatively

GLUE CODE

def glue_code():
with open(‘file’) as f:
result = my_module.do_something(f.readlines())

other_result = other_module.do_things(result)
do_something_amazing(other_result)
return good_things(os.getcwd())

@ g0o0.gl/JkzmYJ @mtomwing

PYTEST FIXTURES AND DOCKER-PY

PYTEST

e Python testing library
® V.S. unittest = less boilerplate

¢ More batteries included
o e.g. fixtures, plugins

PYTEST FIXTURES

e Provide setup and teardown for tests
e Pytest will ensure that the setup

and teardown always happen
o And 1in that order!

e System tests generally set up
a lot of things!
Very slick!

PYTEST FIXTURES

SETUP
[YOUR TEST }
TEARDOWN

R P

PYTEST FIXTURES

SETUP

TEST #1

TEARDOWN

TEST #2

TEARDOWN

=
=

SETUP TEST #3 i TEARDOWN

A LD

PYTEST FLXTURES - SCOPE

SETUP A[TEST #1 }

'

[TEST #2 }
[TEST #3

TEARDOWN

PYTEST FIXTURES - SCOPE

SETUP

SETUP A[TEST #1 }— TEARDOWN
/

SETUP { TEST #2 > TEARDOWN

j l
I l TEARDOWN i

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

DOCKER

e Challenging service setup = docker
e Setup + teardown: bash scripts

DOCKER-PY

e Python library for using docker
e Interface is 1:1 with the REST

interface
o Can be a bit clunky

DOCKER-PY

Create client
Pull image
Create container
Start container
Remove container

o » W N

CREATE CLIENT

import docker
docker_client = docker.Client(
'unix://var/run/docker.sock',

version='auto')

@obcii ilson goo.gl/JkzmYJ @mtomwing

PULL IMAGE

docker_client.pull('percona:5.6"')

PULL TMAGE - ERRORS

response = self._docker_client.pull('busybox:latest')

lines = [line for line response.split('\n') if Lline]
pull_result = json.loads(lines[-1])

1F lerror! pull_result:
raise Exception(pull_result['error'])

ThankSeSteéven Erenst!

@obcii ilson goo.gl/JkzmYJ @mtomwing

CREATE CONTATNER

container = docker_client.create_container(
image="'busybox: latest',

labels=["'docker-test-log'])

@obcii ilson goo.gl/JkzmYJ @mtomwing

START CONTAINER

docker_client.start(container=container["Id"])

KILL AND REMOVE CONTAINER

docker_client.remove_container(
container=container["Id"],
force=True,

@obcii ilson goo.gl/JkzmYJ @mtomwing

PYTEST FIXTURES

+ DOCKER-PY

CREATE CONTAINER

4{ TEST #1 }— DELETE CONTAINER

CREATE CONTAINER

4{ TEST #2 }— DELETE CONTAINER

CREATE CONTAINER

TEST #3 DELETE CONTAINER

PYTEST FLXTURES + DOCKER-PY

RUN httpd:2.4

Y / \
RUN percona:5.6 DELETE percona:5.6
I TEST #1]
RUN redis DELETE redis
\ /
4 N
RUN percona:5.6 DELETE percona:5.6
I TEST #2]
RUN redis DELETE redis
\ /
~
RUN percona:5.6 DELETE percona:5.6
I TEST #3]
RUN redis DELETE redis

S

DELETE httpd:2.40* g =

PYTEST FLKTURES + DOCKER-PY

import docker
import pytest
@pytest.yield_fixture
def example_container():
docker_client = docker.Client('unix://var/run/docker.sock', version='auto')
docker_client.pull(IMAGE)
container = docker_client.create_container(
image=IMAGE,
detach=True,
labels=[1labels.CONTAINERS_FOR_TESTING_LABEL]
)
docker_client.start(container=container["Id"])
container_info = docker_client.inspect_container(container.get('Id'))

yield container_info["NetworkSettings"]["IPAddress"]

docker_client.remove_container(
container=container["Id"],
force=True

@bobcatwilson goo.gl/JkzmYJ

PYTEST H0OKS

e pytest magic!

def pytest_runtest_logreport(report):

PYTEST FLXTURES - DOCKER LOGS

def pytest_runtest_logreport(report):
if report.failed:
docker_client = _docker_client()
test_containers = docker_client.containers(
all=True,
filters={"1label": labels.CONTAINERS_FOR_TESTING_LABEL})
for container test_containers:
log_lines = [
("docker inspect {!r}:".format(container['Id'])),
(pprint.pformat(docker_client.inspect_container(container['Id']))),
("docker logs {!r}:".format(container['Id'])),
(docker_client.logs(container['Id'])),
]

report.longrepr.addsection('docker logs', os.linesep.join(log_lines))

@bobcatwilson goo.gl/JkzmYJ

PYTEST FLXTURES - DOCKER L0GS

WHAT ABOUT DOCKER-COMPOSE?

e Works well when the deployment is static between tests
o Not as well suited when deployment is different for each test

e Integrates with pytest fixtures!
o e.g. Use a fixture to run docker-compose up

e docker-py can help

WHAT ABOUT DOCKER-COMPOSE?

@pytest.fixture

def docker_client():
return docker.Client('unix://var/run/docker.sock', version='auto')

@pytest.fixture
def my_cluster(request):
def fin():
subprocess.check_output(
shlex.split('docker-compose down'))

request.addfinalizer(fin)
subprocess.check_output(
shlex.split('docker-compose up -d'))

@pytest.fixture
def some_container_ip(my_cluster, docker_client):
output = docker_client.inspect_container (SOME_CONTAINER)

return output['NetworkSettings']['Networks'][DOCKER_COMPOSE_NETWORK_NAME]['IPAddress']

goo.gl/JkzmYJ

@mtomwing

GOTCHAS

e Wait for the service to start (backoff)
e Maximize container startup speed!

TAKEAWAYS FOR DEV AND OPS

WHAT DO 1 DO WITH THIS!

e Developers
e Ops

DEVELOPERS

e When to write tests and when not to
e Try some TDD: start with a system test

DEVELOPERS - INTRODUCE SYSTEM TESTS

e Add one system test to each piece of software you own

e Make sure tests can run:
o With as little setup as possible
o As quickly as possible

e Add the system tests to your CI

DEVELOPERS - ALREADY HAVE SYSTEM TESTS

e Do you need all the tests you have?
o Can you replace with integration or unit tests?
o How many retest functionality?
o Can some of the tests be removed?

e Can the tests be faster?

0P

e One off scripts: don’t need system tests
e Scripts and automation that will be used
in the future need system tests

o What is one bare minimum system test you can
add?

e Use automation to regularly run your

tests
o e.g. Travis CI

0PS - TESTS FOR TOOLS

e Tools that use services you can run:
o Use something like pytest + docker-py
e Tools that use services you can’t run (e.g. AWS):

o Can you run a short system test, e.g. once per week?
o Is it going to cost you a lot?
o Make sure the tests clean up after themselves

OV[RVIEW github.com/keeppythonweird/pytest-dockerpy
@bobcatwilson
@mtomwing

/z,‘

)
g

) -
! _!

\ . ‘
\.
@

