SYSTEM TESTING WITH PYTEST AND
DOCKER-PY



http://creativecommons.org/licenses/by-nc-nd/4.0/

HELLO!

e Christie Wilson
o Senior Developer @ Demonware
o Team Lead: Test Tools
e Michael Tom-Wing
o Software Engineer 1in Test @ Demonware
o Focus on automation and quality

e We’re from Canada!




e Video Game Industry
e Online services for games

e Come see us in the vendor area!
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DEMONWARE - 2016

e Test Tools team

e Variety of tests
o Unit tests
o Integration tests
o System tests



WHAT IS TESTING!




WHATISTESTINGL WHY DO WE TEST?




WHY DO WE TEST!

@ To increase confidence in our software
e Avoid regressions
e Document behaviour




WHY DON'T WE TEST!

e NOT to find all the bugs i1n our software
e Will never find all bugs




TESTING + SOFTWARE QUALTTY

e Testing does not increase the quality of our software

e By the time our tests run our software 1is already buggy
o Introduce quality through requirements + design!

e But...
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TESTING + SOFTWARE QUALTTY

e Tests provide metrics to let us reason about quality
o E.g. coverage, timing, # of logs

e Untested software 1is always VIEWED as lower quality

e Less information about the quality
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HOW TO TESTIT

e Unit tests
e Integration tests
e System tests




UNTT TESTS

e Unit tests: ~100% coverage

e Integration tests
e System tests
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INTEGRATION TESTS

e Unit tests: ~100% coverage
e Integration tests: service <-> DB
e System tests
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SYSTEM TESTS

Test the entire system

PROS CONS

e Most valuable e Slowest
e Most likely to find bugs e Hardest to maintain




SYSTEM TESTS

e Unit tests: ~100% coverage
e Integration tests: service <-> DB
e System tests: happy path, few simple failures
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BEST PRACTICES FOR SYSTEM TESTING




BEST PRACTICES

e Use fresh state between tests

e Will help avoid dependencies between tests
o e.g. test ordering shouldn’t affect their outcomes

e Docker helps make this very easy!




BEST PRACTICES

e Ensure tests can run on build servers and locally
o Ease the burden for writing and running tests

e Restrict the test environments you’ll support
o e.g. Linux, OSX, toaster




BEST PRACTICES

e Tests should clean up after themselves
e Fail fast
e Fail informatively




GLUE CODE

def glue_code():
with open(‘file’) as f:
result = my_module.do_something(f.readlines())

other_result = other_module.do_things(result)
do_something_amazing(other_result)
return good_things(os.getcwd())

@ g0o0.gl/JkzmYJ @mtomwing



PYTEST FIXTURES AND DOCKER-PY




PYTEST

e Python testing library
® V.S. unittest = less boilerplate

¢ More batteries included
o e.g. fixtures, plugins




PYTEST FIXTURES

e Provide setup and teardown for tests
e Pytest will ensure that the setup

and teardown always happen
o And 1in that order!

e System tests generally set up
a lot of things!
Very slick!




PYTEST FIXTURES
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PYTEST FIXTURES
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PYTEST FLXTURES - SCOPE
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PYTEST FIXTURES - SCOPE
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DOCKER

e Challenging service setup = docker
e Setup + teardown: bash scripts




DOCKER-PY

e Python library for using docker
e Interface is 1:1 with the REST

interface
o Can be a bit clunky




DOCKER-PY

Create client
Pull image
Create container
Start container
Remove container
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CREATE CLIENT

import docker
docker_client = docker.Client(
'unix://var/run/docker.sock',

version='auto')

@obcii ilson goo.gl/JkzmYJ @mtomwing



PULL IMAGE

docker_client.pull('percona:5.6"')




PULL TMAGE - ERRORS

response = self._docker_client.pull('busybox:latest')

lines = [line for line response.split('\n') if Lline]
pull_result = json.loads(lines[-1])

1F lerror! pull_result:
raise Exception(pull_result['error'])

ThankSeSteéven Erenst!

@obcii ilson goo.gl/JkzmYJ @mtomwing



CREATE CONTATNER

container = docker_client.create_container(
image="'busybox: latest',

labels=["'docker-test-log'])

@obcii ilson goo.gl/JkzmYJ @mtomwing



START CONTAINER

docker_client.start(container=container["Id"])




KILL AND REMOVE CONTAINER

docker_client.remove_container(
container=container["Id"],
force=True,

@obcii ilson goo.gl/JkzmYJ @mtomwing



PYTEST FIXTURES

+ DOCKER-PY

CREATE CONTAINER

4{ TEST #1 }— DELETE CONTAINER

CREATE CONTAINER

4{ TEST #2 }— DELETE CONTAINER

CREATE CONTAINER

TEST #3 DELETE CONTAINER




PYTEST FLXTURES + DOCKER-PY

RUN httpd:2.4

Y / \
RUN percona:5.6 DELETE percona:5.6
I TEST #1 ]
RUN redis DELETE redis
\ /
4 N
RUN percona:5.6 DELETE percona:5.6
I TEST #2 ]
RUN redis DELETE redis
\ /
~
RUN percona:5.6 DELETE percona:5.6
I TEST #3 ]
RUN redis DELETE redis

S

DELETE httpd:2.40* g =



PYTEST FLKTURES + DOCKER-PY

import docker
import pytest
@pytest.yield_fixture
def example_container():
docker_client = docker.Client('unix://var/run/docker.sock', version='auto')
docker_client.pull(IMAGE)
container = docker_client.create_container(
image=IMAGE,
detach=True,
labels=[1labels.CONTAINERS_FOR_TESTING_LABEL]
)
docker_client.start(container=container["Id"])
container_info = docker_client.inspect_container(container.get('Id'))

yield container_info["NetworkSettings"]["IPAddress"]

docker_client.remove_container(
container=container["Id"],
force=True

@bobcatwilson goo.gl/JkzmYJ



PYTEST H0OKS

e pytest magic!

def pytest_runtest_logreport(report):




PYTEST FLXTURES - DOCKER LOGS

def pytest_runtest_logreport(report):
if report.failed:
docker_client = _docker_client()
test_containers = docker_client.containers(
all=True,
filters={"1label": labels.CONTAINERS_FOR_TESTING_LABEL})
for container test_containers:
log_lines = [
("docker inspect {!r}:".format(container['Id'])),
(pprint.pformat(docker_client.inspect_container(container['Id']))),
("docker logs {!r}:".format(container['Id'])),
(docker_client.logs(container['Id'])),
]

report.longrepr.addsection('docker logs', os.linesep.join(log_lines))

@bobcatwilson goo.gl/JkzmYJ




PYTEST FLXTURES - DOCKER L0GS




WHAT ABOUT DOCKER-COMPOSE?

e Works well when the deployment is static between tests
o Not as well suited when deployment is different for each test

e Integrates with pytest fixtures!
o e.g. Use a fixture to run docker-compose up

e docker-py can help




WHAT ABOUT DOCKER-COMPOSE?

@pytest.fixture

def docker_client():
return docker.Client('unix://var/run/docker.sock', version='auto')

@pytest.fixture
def my_cluster(request):
def fin():
subprocess.check_output(
shlex.split('docker-compose down'))

request.addfinalizer(fin)
subprocess.check_output(
shlex.split('docker-compose up -d'))

@pytest.fixture
def some_container_ip(my_cluster, docker_client):
output = docker_client.inspect_container (SOME_CONTAINER)

return output['NetworkSettings']['Networks'][DOCKER_COMPOSE_NETWORK_NAME]['IPAddress']

goo.gl/JkzmYJ
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GOTCHAS

e Wait for the service to start (backoff)
e Maximize container startup speed!




TAKEAWAYS FOR DEV AND OPS




WHAT DO 1 DO WITH THIS!

e Developers
e Ops




DEVELOPERS

e When to write tests and when not to
e Try some TDD: start with a system test




DEVELOPERS - INTRODUCE SYSTEM TESTS

e Add one system test to each piece of software you own

e Make sure tests can run:
o With as little setup as possible
o As quickly as possible

e Add the system tests to your CI




DEVELOPERS - ALREADY HAVE SYSTEM TESTS

e Do you need all the tests you have?
o Can you replace with integration or unit tests?
o How many retest functionality?
o Can some of the tests be removed?

e Can the tests be faster?




0P

e One off scripts: don’t need system tests
e Scripts and automation that will be used
in the future need system tests

o What is one bare minimum system test you can
add?

e Use automation to regularly run your

tests
o e.g. Travis CI



0PS - TESTS FOR TOOLS

e Tools that use services you can run:
o Use something like pytest + docker-py
e Tools that use services you can’t run (e.g. AWS):

o Can you run a short system test, e.g. once per week?
o Is it going to cost you a lot?
o Make sure the tests clean up after themselves




OV[RVIEW github.com/keeppythonweird/pytest-dockerpy
@bobcatwilson
@mtomwing
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