
TDD of Python Microservices
Michał Bultrowicz

About me
● Name: Michał Bultrowicz
● Previous employers: Intel… that’s the full list
● Previous occupation: technical team-leader on Trusted

Analytics Platform project
● Current Occupation: N/A
● “Website”: https://github.com/butla (...working on a blog...)

https://github.com/butla

Microservices:
- services
- micro
- independent
- cooperating

Twelve-Factor App (http://12factor.net/)
1. One codebase tracked in

revision control, many deploys
2. Explicitly declare and isolate

dependencies
3. Store config in the environment
4. Treat backing services as

attached resources
5. Strictly separate build and run

stages
6. Execute the app as one or more

stateless processes

7. Export services via port binding
8. Scale out via the process model
9. Maximize robustness with fast

startup and graceful shutdown
10. Keep development, staging, and

production as similar as possible
11. Treat logs as event streams
12. Run admin/management tasks

as one-off processes

http://12factor.net/

Word of advice
● Start with a monolith.
● Separating out microservices should be natural.

TESTS!

Tests
● Present in my service (around 85% coverage).
● Sometimes convoluted.
● Didn’t ensure that the service will even get up.

UNIT tests
● Present in my service (around 85% coverage).
● Sometimes convoluted.
● Didn’t ensure that the service will even get up

Tests of the entire application!
● Run the whole app’s process.
● App “doesn’t know” it’s not in production.
● Run locally, before a commit.
● High confidence that the app will get up.
● ...require external services and data bases...

External services locally?
Service mocks (and stubs):

● WireMock
● Pretenders (Python)
● Mountebank

Data bases (and other systems) locally?
● Normally - a tiresome setup
● Verified Fakes - rarely seen
● Docker - just create everything you need

Now some theory

http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid

http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid
http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid

Harry J.W. Percival, “Test Driven Development with Python”

TDD (the thing I needed!)
Pros:

● Confidence in face of changes.
● Automation checks everything.
● Ward off bad design.

Requirements:

● Discipline
● Tools

Implementation

PyDAS
● A rewrite of an old, problematic (Java) service.
● My guinea pig.
● TDD helped a lot.
● ...not perfect, but educating

https://github.com/butla/pydas

https://github.com/butla/pydas
https://github.com/butla/pydas

Pytest
● Concise
● Clear composition of fixtures
● Control of this composition (e.g. for reducing test duration)
● Helpful error reports

def test_something(our_service, db):

 db.put(TEST_DB_ENTRY)

 response = requests.get(

 our_service.url + '/something',

 headers={'Authorization': TEST_AUTH_HEADER})

 assert response.status_code == 200

import pytest, redis

@pytest.yield_fixture(scope='function')

def db(db_session):

 yield db_session

 db_session.flushdb()

@pytest.fixture(scope='session')

def db_session(redis_port):

 return redis.Redis(port=redis_port, db=0)

import docker, pytest

@pytest.yield_fixture(scope='session')

def redis_port():

 docker_client = docker.Client(version='auto')

 download_image_if_missing(docker_client)

 container_id, redis_port = start_redis_container(docker_client)

 yield redis_port

 docker_client.remove_container(container_id, force=True)

@pytest.fixture(scope='function')

def our_service(our_service_session, ext_service_impostor):

 return our_service

Mountepy
● Manages a Mountebank instance.
● Manages service processes.
● https://github.com/butla/mountepy
● $ pip install mountepy

https://github.com/butla/mountepy
https://github.com/butla/mountepy

import mountepy

@pytest.yield_fixture(scope='session')

def our_service_session():

 service_command = [

 WAITRESS_BIN_PATH,

 '--port', '{port}',

 '--call', 'data_acquisition.app:get_app']

 service = mountepy.HttpService(

 service_command,

 env={

 'SOME_CONFIG_VALUE': 'blabla',

 'PORT': '{port}',

 'PYTHONPATH': PROJECT_ROOT_PATH})

 service.start()

 yield service

 service.stop()

@pytest.yield_fixture(scope='function')

def ext_service_impostor(mountebank):

 impostor = mountebank.add_imposter_simple(

 port=EXT_SERV_STUB_PORT,

 path=EXT_SERV_PATH,

 method='POST')

 yield impostor

 impostor.destroy()

@pytest.yield_fixture(scope='session')

def mountebank():

 mb = Mountebank()

 mb.start()

 yield mb

 mb.stop()

Service test(s) ready!

Remarks about service tests
● Will yield big error logs.
● Breaking a fixture yields crazy logs.
● Won’t save us from stupidity (e.g. hardcoded localhost)

The danger of
“other people’s
commits”

Our weapons
● Test coverage
● Static analysis (pylint, pyflakes, etc.)
● Contract tests

.coveragerc (from PyDAS)
[report]

fail_under = 100

[run]

source = data_acquisition

parallel = true

http://coverage.readthedocs.io/en/coverage-4.0.3/subprocess.html

http://coverage.readthedocs.io/en/coverage-4.0.3/subprocess.html
http://coverage.readthedocs.io/en/coverage-4.0.3/subprocess.html

Static analysis
tox.ini (simplified)

[testenv]

commands =

 coverage run -m py.test tests/

 coverage report -m

 /bin/bash -c "pylint data_acquisition --rcfile=.pylintrc"

https://tox.readthedocs.io

https://tox.readthedocs.io
https://tox.readthedocs.io

Contract tests:
a leash for the interface

swagger: '2.0'
info:
 version: "0.0.1"
 title: Some interface
paths:
 /person/{id}:
 get:
 parameters:
 -
 name: id
 in: path
 required: true
 type: string
 format: uuid
 responses:
 '200':
 description: Successful response
 schema:
 title: Person
 type: object
 properties:
 name:
 type: string
 single:
 type: boolean

http://swagger.io/

Contract is separate from the code!

http://swagger.io/
http://swagger.io/

Bravado (https://github.com/Yelp/bravado)
● Creates service client from Swagger
● Verifies

○ Parameters
○ Returned values
○ Returned HTTP codes

● Configurable (doesn’t have to be as strict)

https://github.com/Yelp/bravado

Bravado usage
● In service tests: instead of “requests”
● In unit tests:

○ https://github.com/butla/bravado-falcon
● Now they all double as contract tests

https://github.com/butla/bravado-falcon
https://github.com/butla/bravado-falcon

from bravado.client import SwaggerClient

from bravado_falcon import FalconHttpClient

import yaml

import tests # our tests package

def test_contract_unit(swagger_spec):

 client = SwaggerClient.from_spec(

 swagger_spec,

 http_client=FalconHttpClient(tests.service.api))

 resp_object = client.v1.submitOperation(

 body={'name': 'make_sandwich', 'repeats': 3},

 worker='Mom').result()

 assert resp_object.status == 'whatever'

@pytest.fixture()

def swagger_spec():

 with open('api_spec.yaml') as spec_file:

 return yaml.load(spec_file)

def test_contract_service(swagger_spec, our_service):

 client = SwaggerClient.from_spec(

 swagger_spec,

 origin_url=our_service.url))

 request_options = {

 'headers': {'authorization': A_VALID_TOKEN},

 }

 resp_object = client.v1.submitOperation(

 body={'name': 'make_sandwich', 'repeats': 3},

 worker='Mom',

 _request_options=requet_options).result()

 assert resp_object.status == 'whatever'

“Our stuff”
is taken care of...

???

More about tests / microservices / stuff
“Building Microservices”, O'Reilly

“Test Driven Development with Python”

http://martinfowler.com/articles/microservice-testing/

“Fast test, slow test” (https://youtu.be/RAxiiRPHS9k)

Building Service interfaces with OpenAPI / Swagger (EP2016)

System Testing with pytest and docker-py (EP2016)

http://martinfowler.com/articles/microservice-testing/
http://martinfowler.com/articles/microservice-testing/
https://youtu.be/RAxiiRPHS9k

