
@andrewburrows

Testing the Untestable
A beginner's guide to mock objects

• London based systematic hedge fund since 1987
• $19.2bn Funds Under Management (2016-03-31)
• We are active in 400+ markets in 40+ countries
• We take ~2bn market data points each day
• https://github.com/manahl/arctic
• 125 people, 22 first languages. And Python!

@manahltech
https://github.com/manahltech

Testing the Untestable
A beginner's guide to mock objects

Example based
Some theory/definitions
pytest
python3

https://github.com/burrowsa/mocking

Why am I here?

https://twitter.com/thepracticaldev https://memegenerator.net/instance/65198099

class ConferenceSpeaker(object):
 def __init__(self, name, twitterhandle):
 self.name = name
 self.twitterhandle = twitterhandle

 def greet(self, delegates):
 for delegate in delegates:
 delegate.speakto("Hi my name is {0.name}, follow me"
 "on twitter @{0.twitterhandle}".format(self))

Easy Example

class ConferenceSpeaker(object):
 def __init__(self, name, twitterhandle):
 self.name = name
 self.twitterhandle = twitterhandle

 def greet(self, delegates):
 for delegate in delegates:
 delegate.speakto("Hi my name is {0.name}, follow me"
 "on twitter @{0.twitterhandle}".format(self))

Easy Example

System Under Test (SUT)
The "system under test". It is short for "whatever thing we are testing".

class ConferenceSpeaker(object):
 def __init__(self, name, twitterhandle):
 self.name = name
 self.twitterhandle = twitterhandle

 def greet(self, delegates):
 for delegate in delegates:
 delegate.speakto("Hi my name is {0.name}, follow me"
 "on twitter @{0.twitterhandle}".format(self))

Easy Example

import re
import simpletweeter

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
 def __init__(self, credentialsfile):
 self.credentialsfile = credentialsfile

 def speakto(self, message):
 matched = TWITTER_REGEX.match(message)
 if matched:
 simpletweeter.tweet("Amazing talk from @" + matched.groups()[
 self.credentialsfile)

Not so easy

from mocking import ConferenceSpeaker

def test_speaker_greets_sole_delegate_no_mocks():
 sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")

 class TestDelegate(object):
 def __init__(self):
 self.calls = []
 def speakto(self, msg):
 self.calls.append(("speakto", msg))

 delegate = TestDelegate()

 sut.greet([delegate])

 assert delegate.calls == [("speakto", "Hi my name is Andy Burrows, "
 "follow me on twitter @andrewburrows")]

If it quacks like a duck...

from mocking import ConferenceSpeaker, ConferenceDelegate
from unittest.mock import Mock, call

def test_speaker_greets_sole_delegate():
 # Arrange
 sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
 delegate = Mock()

 # Act
 sut.greet([delegate])

 # Assert
 delegate.speakto.assert_called_once_with("Hi my name is Andy Burrows, "
 "follow me on twitter @andrewburrows"

Mock FTW!!!

>>> from unittest.mock import Mock

>>> my_mock = Mock()
>>> my_mock
<Mock id='56147192'>

>>> my_mock = Mock(name="my_mock")
>>> my_mock
<Mock name='my_mock' id='56191128'>

>>> my_mock.hello
<Mock name='my_mock.hello' id='56146744'>

>>> my_mock()
<Mock name='my_mock()' id='56202912'>

>>> my_mock.a_method(1, 2, 3)
<Mock name='my_mock.a_method()' id='56147192'>

It's Mocks all the way down

parlez-vous mocks?
Test Double - any pretend object used for testing

http://martinfowler.com/articles/mocksArentStubs.html

parlez-vous mocks?
Test Double - any pretend object used for testing

Fake - e.g. a in memory database used in place
of the real DB

http://martinfowler.com/articles/mocksArentStubs.html

parlez-vous mocks?
Test Double - any pretend object used for testing
Fake - e.g. a in memory database used in place of the real DB

Dummy - Dummy value used to pad out an
argument list or trace the flow of data through
our program. Can not interact with the SUT. In
python we use a sentinel.

http://martinfowler.com/articles/mocksArentStubs.html

parlez-vous mocks?
Test Double - any pretend object used for testing
Fake - e.g. a in memory database used in place of the real DB
Dummy - Dummy value used to pad out an argument list or trace
the flow of data through our program. Can not interact with the SUT.
In python we use a sentinel.

Mock - Pretend object which records interactions
and allows the test code to assert these match
expectations.

http://martinfowler.com/articles/mocksArentStubs.html

parlez-vous mocks?
Test Double - any pretend object used for testing
Fake - e.g. a in memory database used in place of the real DB
Dummy - Dummy value used to pad out an argument list or trace
the flow of data through our program. Can not interact with the SUT.
In python we use a sentinel.
Mock - Pretend object which records interactions and allows the test
code to assert these match expectations.

Stub - Pretend object which supports limited,
canned interactions with the SUT. In python we
use a Mock with a side_effect.
Spy - see Mock

http://martinfowler.com/articles/mocksArentStubs.html

from mocking import ConferenceSpeaker, ConferenceDelegate
from unittest.mock import Mock, call

def test_speaker_greets_sole_delegate():
 # Arrange
 sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
 delegate = Mock()

 # Act
 sut.greet([delegate])

 # Assert
 delegate.speakto.assert_called_once_with("Hi my name is Andy Burrows, "
 "follow me on twitter @andrewburrows"

Assertions

def test_speaker_greets_sole_delegate_v2():
 # Arrange
 sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
 delegate = Mock()

 # Act
 sut.greet([delegate])

 # Assert
 assert delegate.mock_calls == [call.speakto("Hi my name is Andy Burrows, "
 "follow me on twitter @andrewburrows"

Assertions

>>> m = Mock()
>>> m.foo('hello')
>>> m.bar('world')
>>> x = m(0)
>>> x.hello(123)
>>> print(m.mock_calls)
[call.foo('hello'), call.bar('world'), call(0), call().hello(123)]

def test_speaker_greets_sole_delegate_v3():
 # Arrange
 sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
 delegate = Mock(spec=ConferenceDelegate)

 # Act
 sut.greet([delegate])

 ...

>>> m = Mock(spec=ConferenceDelegate)
>>> m.snore(volume="LOUD")
Traceback (most recent call last):
 File "mocking\tests\test_conference_speaker.py", line 83, in <module>
 mock_delegate.snore(volume="LOUD")
 File "unittest\mock.py", line 557, in __getattr__
 raise AttributeError("Mock object has no attribute %r" % name)
AttributeError: Mock object has no attribute 'snore'

Spec=

import re
import simpletweeter

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
 def __init__(self, credentialsfile):
 self.credentialsfile = credentialsfile

 def speakto(self, message):
 matched = TWITTER_REGEX.match(message)
 if matched:
 simpletweeter.tweet("Amazing talk from @" + matched.groups()[
 self.credentialsfile)

Harder Example

import re
import simpletweeter

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
 def __init__(self, credentialsfile):
 self.credentialsfile = credentialsfile

 def speakto(self, message):
 matched = TWITTER_REGEX.match(message)
 if matched:
 simpletweeter.tweet("Amazing talk from @" + matched.groups()[
 self.credentialsfile)

Harder Example

from unittest.mock import sentinel, patch

def test_delegate_tweets_if_message_contains_twitter_handle():
 sut = ConferenceDelegate(sentinel.credentialsfile)

 with patch("simpletweeter.tweet") as mock_tweet:
 sut.speakto("Hi, why not follow me on twitter @manahltech")

 mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
 sentinel.credentialsfile)

Patch

def test_delegate_tweets_if_message_contains_twitter_handle():
 sut = ConferenceDelegate(sentinel.credentialsfile)

 with patch("mocking.conferencedelegate.tweet") as mock_tweet:
 sut.speakto("Hi, why not follow me on twitter @manahltech")

 mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
 sentinel.credentialsfile)

import re
from simpletweeter import tweet

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
 ...

 def speakto(self, message):
 matched = TWITTER_REGEX.match(message)
 if matched:
 tweet("Amazing talk from @" + matched.groups()[0],
 self.credentialsfile)

from unittest.mock import sentinel, patch

def test_delegate_tweets_if_message_contains_twitter_handle():
 sut = ConferenceDelegate(sentinel.credentialsfile)

 with patch("simpletweeter.tweet") as mock_tweet:
 sut.speakto("Hi, why not follow me on twitter @manahltech")

 mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
 sentinel.credentialsfile)

Sentinels

import tweeterapi
from os.path import expanduser

CREDENTIALS_FILE = expanduser("~/twittercredentials.cfg")

def tweet(msg, credentials_file=CREDENTIALS_FILE):
 """Sends a tweet using the login credentials supplied in a file and
 retries up to 5 times in the even of a failure.

 Args:
 msg (str): The message to be tweeted.
 credentials_file (str): The path of the file containing the login credentials to use.
 """
 username, password = _read_credentials(credentials_file)

 t = tweeterapi.Tweeter(username, password)

 for _ in range(5):
 if t.tweet(msg):
 break
 else:
 raise RuntimeError("Unable to tweet")

simpletweeter.py

@patch('tweeterapi.Tweeter')
@patch('simpletweeter._read_credentials', return_value=(sentinel.username, sentinel.password))
def test_tweet_raises_exception_on_failure(_, mock_tweeter):
 mock_tweeter.return_value.tweet.return_value = False

 with pytest.raises(RuntimeError) as err:
 tweet(sentinel.message, sentinel.credentials_file)

 assert str(err.value) == "Unable to tweet"

return_value

@patch('tweeterapi.Tweeter')
@patch('simpletweeter._read_credentials', return_value=(sentinel.username, sentinel.password))
def test_tweet_raises_exception_on_failure(_, mock_tweeter):
 mock_tweeter.return_value.tweet.return_value = False

 with pytest.raises(RuntimeError) as err:
 tweet(sentinel.message, sentinel.credentials_file)

 assert str(err.value) == "Unable to tweet"

@patch

@patch('tweeterapi.Tweeter')
@patch('simpletweeter._read_credentials', return_value=(sentinel.username, sentinel.password))
def test_tweet_retries_on_failure(_, mock_tweeter):
 mock_tweeter.return_value.tweet.side_effect = [False, False, True]

 tweet(sentinel.message, sentinel.credentials_file)

 mock_tweeter.mock_calls = [call(sentinel.username, sentinel.password),
 call.tweet(sentinel.message),
 call.tweet(sentinel.message),
 call.tweet(sentinel.message)]

return_values side_effect

sequence
exception
function/lambda

Effectively makes a stub
Occasionally useful
"Bad code smell" if all your tests rely
heavily on defining side effects

side_effect

from simpletweeter import tweet

class ConferenceDelegate(object):
 ...

 def smalltalk(self, delegate):
 if delegate.speakto("Hello.") in ("hello", "hi"):
 if delegate.speakto("Good conference?") in ("yes", "yup", "not bad", "yeah"):
 best_bit = delegate.speakto("What has been your favourite part?")
 delegate.speakto("Really, I didn't go to that.")
 delegate.speakto("Nice chatting with you, gotta go.")

 tweet("Absolutely loved " + best_bit)

Making conversation

def test_successful_conversation_using_side_effect():
 stranger = Mock(name="stranger")

 def stranger_speakto(msg):
 if msg == "Hello.":
 return "hi"
 elif msg == "Good conference?":
 return "not bad"
 elif msg == "What has been your favourite part?":
 return "a brilliant talk on mocks"
 elif msg == "Really, I didn't go to that.":
 return "shame, it was amazing"
 elif msg == "Nice chatting with you, gotta go.":
 return "laters"

 stranger.speakto.side_effect = stranger_speakto

 delegate = ConferenceDelegate()
 with patch("mocking.conferencedelegate4.tweet") as mock_tweet:
 delegate.smalltalk(stranger)

 mock_tweet.assert_called_once_with("Absolutely loved a brilliant talk on mocks"

Stubs

def test_successful_conversation():
 s= Mock(name="stranger")
 when(s.speakto).called_with("Hello.").then("hi")
 when(s.speakto).called_with("Good conference?").then("not bad")
 when(s.speakto).called_with("What has been your favourite part?").then("a brilliant talk on mocks"
 when(s.speakto).called_with("Really, I didn't go to that.").then("shame, it was amazing")
 when(s.speakto).called_with("Nice chatting with you, gotta go.").then("laters")

 delegate = ConferenceDelegate()
 with patch("mocking.conferencedelegate4.tweet") as mock_tweet:
 delegate.smalltalk(s)

 mock_tweet.assert_called_once_with("Absolutely loved a brilliant talk on mocks")

https://github.com/manahl/mockextras/
http://mockextras.readthedocs.org/

Mockextras

Beware the Dark Side

Do Mock

Webservices
Sending email
Database access
"Production"
Disc
Environment vars
3rd party APIs
Randomness
Time

Beware the Dark Side
Over-mocking

Don't mockDo Mock

Webservices
Sending email
Database access
"Production"
Disc
Environment vars
3rd party APIs
Randomness
Time

Builtin types
"Builtin" types
numpy/pandas
"Structs"

Beware the Dark Side
Over-mocking

Don't mockDo Mock

Webservices
Sending email
Database access
"Production"
Disc
Environment vars
3rd party APIs
Randomness
Time

Builtin types
"Builtin" types
numpy/pandas
"Structs"

Beware the Dark Side
?? Everything else ??

Over-mocking

http://martinfowler.com/articles/mocksArentStubs.html

A classical TDD approach is to use real object
wherever possible only using a stub/fake/mock
when it is difficult to use the real thing.
The Mockist style prefers to use Mocks for any
object with "interesting behaviour".

Two Schools

are brittle to changes in the SUT
are expensive to maintain
often get thrown away during refactoring
give mocks a bad name
are easy to write ;)
boost coverage stats ;)

Over-mocking

Over mocked tests:

class ConferenceDelegate(object):
 ...

 def rate_talk(self,
 number_of_kitten_pics,
 usefulness_of_content,
 clarity_of_presentation
):
 return number_of_kitten_pics * (usefulness_of_content
 + clarity_of_presentation)

ISO-K1773N5

def test_delegate_can_rate_a_talk():
 kittens = MagicMock(name="number_of_kitten_pics")
 usefulness = MagicMock(name="usefulness_of_content")
 clarity = MagicMock(name="clarity_of_presentation")

 delegate = ConferenceDelegate()

 result = delegate.rate_talk(kittens, usefulness, clarity)

 assert result is kittens.__mul__.return_value
 assert kittens.mock_calls == [('__mul__', (usefulness.__add__.return_value,))]
 assert usefulness.mock_calls == [('__add__', (clarity,))]

Overmocked

@pytest.mark.parametrize("kittens,"
 "usefulness,"
 "clarity,"
 "expected_rating",
 [(1, 1, 1, 2), # ticks all the boxes
 (0, 1, 1, 0), # no cats no points
 (1, 0, 1, 1), # lacking content
 (1, 1, 0, 1), # lacking clarity
 (10, 0, 1, 10), # loadz of cats
 (10, 1, 0, 10), # loadz of cats
 (1, 10, 1, 11), # great content
 (1, 1, 10, 11), # great delivery
])
def test_delegate_can_rate_a_talk_no_mocks(kittens, usefulness, clarity, expected_rating):
 delegate = ConferenceDelegate()
 assert expected_rating == delegate.rate_talk(kittens, usefulness, clarity)

Phew!

Write tests
Use mocks they are easy and fun
patch is a great tool to inject mocks into
your code
I love sentinels - so should you
Function side_effects are an "occasional
treat"
Never "over mock"

Summary

Questions
https://github.com/burrowsa/mocking

@manahltech

https://github.com/manahltech
Opinions expressed are those of the author and may not be shared by all personnel of Man Group plc (‘Man’). These opinions are subject
to change without notice, are for information purposes only and do not constitute an offer or invitation to make an investment in any
financial instrument or in any product to which the Company and/ or its affiliates provides investment advisory or any other financial
services. Any organizations, financial instrument or products described in this material are mentioned for reference purposes only which
should not be considered a recommendation for their purchase or sale. Neither the Company nor the authors shall be liable to any
person for any action taken on the basis of the information provided. Some statements contained in this material concerning goals,
strategies, outlook or other non-historical matters may be forward-looking statements and are based on current indicators and
expectations. These forward-looking statements speak only as of the date on which they are made, and the Company undertakes no
obligation to update or revise any forward-looking statements. These forward-looking statements are subject to risks and uncertainties
that may cause actual results to differ materially from those contained in the statements. The Company and/or its affiliates may or may
not have a position in any financial instrument mentioned and may or may not be actively trading in any such securities. This material is
proprietary information of the Company and its affiliates and may not be reproduced or otherwise disseminated in whole or in part
without prior written consent from the Company. The Company believes the content to be accurate. However, accuracy is not warranted
or guaranteed. The Company does not assume any liability in the case of incorrectly reported or incomplete information. Unless stated
otherwise all information is provided by the Company.

