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Testing the Untestable
A beginner's guide to mock objects

Example based
Some theory/definitions
pytest
python3

https://github.com/burrowsa/mocking



Why am I here?

https://twitter.com/thepracticaldev https://memegenerator.net/instance/65198099



class ConferenceSpeaker(object):
    def __init__(self, name, twitterhandle):
        self.name = name
        self.twitterhandle = twitterhandle
    
    def greet(self, delegates):
        for delegate in delegates:
            delegate.speakto("Hi my name is {0.name}, follow me"
                             "on twitter @{0.twitterhandle}".format(self))

Easy Example
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System Under Test (SUT)
The "system under test". It is short for "whatever thing we are testing".
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import re
import simpletweeter

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
    def __init__(self, credentialsfile):
        self.credentialsfile = credentialsfile
        
    def speakto(self, message):
        matched = TWITTER_REGEX.match(message)
        if matched:
            simpletweeter.tweet("Amazing talk from @" + matched.groups()[
                                self.credentialsfile)

Not so easy



from mocking import ConferenceSpeaker

def test_speaker_greets_sole_delegate_no_mocks():
    sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")

    class TestDelegate(object):
        def __init__(self):
            self.calls = []
        def speakto(self, msg):
            self.calls.append(("speakto", msg)) 
    
    delegate = TestDelegate()
    
    sut.greet([delegate])
    
    assert delegate.calls == [("speakto", "Hi my name is Andy Burrows, "
                               "follow me on twitter @andrewburrows")]

If it quacks like a duck...



from mocking import ConferenceSpeaker, ConferenceDelegate
from unittest.mock import Mock, call

def test_speaker_greets_sole_delegate():
    # Arrange
    sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
    delegate = Mock()
    
    # Act
    sut.greet([delegate])
    
    # Assert
    delegate.speakto.assert_called_once_with("Hi my name is Andy Burrows, "
                                             "follow me on twitter @andrewburrows"

Mock FTW!!!



>>> from unittest.mock import Mock

>>> my_mock = Mock()
>>> my_mock
<Mock id='56147192'>

>>> my_mock = Mock(name="my_mock")
>>> my_mock
<Mock name='my_mock' id='56191128'>

>>> my_mock.hello
<Mock name='my_mock.hello' id='56146744'>

>>> my_mock()
<Mock name='my_mock()' id='56202912'>

>>> my_mock.a_method(1, 2, 3)
<Mock name='my_mock.a_method()' id='56147192'>

It's Mocks all the way down



parlez-vous mocks?
Test Double - any pretend object used for testing

http://martinfowler.com/articles/mocksArentStubs.html
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parlez-vous mocks?
Test Double - any pretend object used for testing
Fake - e.g. a in memory database used in place of the real DB
Dummy - Dummy value used to pad out an argument list or trace
the flow of data through our program. Can not interact with the SUT.
In python we use a sentinel.
Mock - Pretend object which records interactions and allows the test
code to assert these match expectations.

Stub - Pretend object which supports limited,
canned interactions with the SUT. In python we
use a Mock with a side_effect.
Spy - see Mock

http://martinfowler.com/articles/mocksArentStubs.html



from mocking import ConferenceSpeaker, ConferenceDelegate
from unittest.mock import Mock, call

def test_speaker_greets_sole_delegate():
    # Arrange
    sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
    delegate = Mock()
    
    # Act
    sut.greet([delegate])
    
    # Assert
    delegate.speakto.assert_called_once_with("Hi my name is Andy Burrows, "
                                             "follow me on twitter @andrewburrows"

Assertions



def test_speaker_greets_sole_delegate_v2():  
    # Arrange
    sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
    delegate = Mock()
    
    # Act
    sut.greet([delegate])
    
    # Assert
    assert delegate.mock_calls == [call.speakto("Hi my name is Andy Burrows, "
                                                "follow me on twitter @andrewburrows"

Assertions

>>> m = Mock()
>>> m.foo('hello')
>>> m.bar('world')
>>> x = m(0)
>>> x.hello(123)
>>> print(m.mock_calls)
[call.foo('hello'), call.bar('world'), call(0), call().hello(123)]



def test_speaker_greets_sole_delegate_v3():  
    # Arrange
    sut = ConferenceSpeaker("Andy Burrows", "andrewburrows")
    delegate = Mock(spec=ConferenceDelegate)
    
    # Act
    sut.greet([delegate])
    
    ...

>>> m = Mock(spec=ConferenceDelegate)
>>> m.snore(volume="LOUD")
Traceback (most recent call last):
  File "mocking\tests\test_conference_speaker.py", line 83, in <module>
    mock_delegate.snore(volume="LOUD")
  File "unittest\mock.py", line 557, in __getattr__
    raise AttributeError("Mock object has no attribute %r" % name)
AttributeError: Mock object has no attribute 'snore'

Spec=
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from unittest.mock import sentinel, patch

def test_delegate_tweets_if_message_contains_twitter_handle():
    sut = ConferenceDelegate(sentinel.credentialsfile)
    
    with patch("simpletweeter.tweet") as mock_tweet:
        sut.speakto("Hi, why not follow me on twitter @manahltech")
    
    mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
                                       sentinel.credentialsfile)

Patch



def test_delegate_tweets_if_message_contains_twitter_handle():
    sut = ConferenceDelegate(sentinel.credentialsfile)
    
    with patch("mocking.conferencedelegate.tweet") as mock_tweet:
        sut.speakto("Hi, why not follow me on twitter @manahltech")
    
    mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
                                       sentinel.credentialsfile)

import re
from simpletweeter import tweet

TWITTER_REGEX = re.compile(".*follow me on twitter @(\w+)")

class ConferenceDelegate(object):
    ...
        
    def speakto(self, message):
        matched = TWITTER_REGEX.match(message)
        if matched:
            tweet("Amazing talk from @" + matched.groups()[0],
                  self.credentialsfile)



from unittest.mock import sentinel, patch

def test_delegate_tweets_if_message_contains_twitter_handle():
    sut = ConferenceDelegate(sentinel.credentialsfile)
    
    with patch("simpletweeter.tweet") as mock_tweet:
        sut.speakto("Hi, why not follow me on twitter @manahltech")
    
    mock_tweet.assert_called_once_with("Amazing talk from @manahltech",
                                       sentinel.credentialsfile)

Sentinels



import tweeterapi
from os.path import expanduser

CREDENTIALS_FILE = expanduser("~/twittercredentials.cfg")

def tweet(msg, credentials_file=CREDENTIALS_FILE):
    """Sends a tweet using the login credentials supplied in a file and 
    retries up to 5 times in the even of a failure.

    Args:
        msg (str): The message to be tweeted.
        credentials_file (str): The path of the file containing the login credentials to use.
    """
    username, password = _read_credentials(credentials_file)

    t = tweeterapi.Tweeter(username, password)
    
    for _ in range(5):
        if t.tweet(msg):
            break
    else:
        raise RuntimeError("Unable to tweet")

simpletweeter.py



@patch('tweeterapi.Tweeter')
@patch('simpletweeter._read_credentials', return_value=(sentinel.username, sentinel.password))
def test_tweet_raises_exception_on_failure(_, mock_tweeter):
    mock_tweeter.return_value.tweet.return_value = False
    
    with pytest.raises(RuntimeError) as err:
        tweet(sentinel.message, sentinel.credentials_file)
        
    assert str(err.value) == "Unable to tweet"

return_value



@patch('tweeterapi.Tweeter')
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@patch('tweeterapi.Tweeter')
@patch('simpletweeter._read_credentials', return_value=(sentinel.username, sentinel.password))
def test_tweet_retries_on_failure(_, mock_tweeter):
    mock_tweeter.return_value.tweet.side_effect = [False, False, True]
    
    tweet(sentinel.message, sentinel.credentials_file)
    
    mock_tweeter.mock_calls = [call(sentinel.username, sentinel.password),
                               call.tweet(sentinel.message),
                               call.tweet(sentinel.message),
                               call.tweet(sentinel.message)]

return_values side_effect



sequence
exception
function/lambda

Effectively makes a stub
Occasionally useful
"Bad code smell" if all your tests rely
heavily on defining side effects

side_effect



from simpletweeter import tweet

class ConferenceDelegate(object):
    ...
    
    def smalltalk(self, delegate):
        if delegate.speakto("Hello.") in ("hello", "hi"):
            if delegate.speakto("Good conference?") in ("yes", "yup", "not bad", "yeah"):
                best_bit = delegate.speakto("What has been your favourite part?")
                delegate.speakto("Really, I didn't go to that.")
                delegate.speakto("Nice chatting with you, gotta go.")
                
                tweet("Absolutely loved " + best_bit)

Making conversation



def test_successful_conversation_using_side_effect():
    stranger = Mock(name="stranger")

    def stranger_speakto(msg):
        if msg == "Hello.":
            return "hi"
        elif msg == "Good conference?":
            return "not bad"
        elif msg == "What has been your favourite part?":
            return "a brilliant talk on mocks"
        elif msg == "Really, I didn't go to that.":
            return "shame, it was amazing"
        elif msg == "Nice chatting with you, gotta go.":
            return "laters"
    
    stranger.speakto.side_effect = stranger_speakto
    
    delegate = ConferenceDelegate()
    with patch("mocking.conferencedelegate4.tweet") as mock_tweet:
        delegate.smalltalk(stranger)
        
    mock_tweet.assert_called_once_with("Absolutely loved a brilliant talk on mocks"

Stubs



def test_successful_conversation():
    s= Mock(name="stranger")
    when(s.speakto).called_with("Hello.").then("hi")
    when(s.speakto).called_with("Good conference?").then("not bad")
    when(s.speakto).called_with("What has been your favourite part?").then("a brilliant talk on mocks"
    when(s.speakto).called_with("Really, I didn't go to that.").then("shame, it was amazing")
    when(s.speakto).called_with("Nice chatting with you, gotta go.").then("laters")
    
    delegate = ConferenceDelegate()
    with patch("mocking.conferencedelegate4.tweet") as mock_tweet:
        delegate.smalltalk(s)
        
    mock_tweet.assert_called_once_with("Absolutely loved a brilliant talk on mocks")

https://github.com/manahl/mockextras/
http://mockextras.readthedocs.org/

Mockextras



Beware the Dark Side



Do Mock

Webservices
Sending email
Database access
"Production"
Disc
Environment vars
3rd party APIs
Randomness
Time

Beware the Dark Side
Over-mocking
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Don't mockDo Mock

Webservices
Sending email
Database access
"Production"
Disc
Environment vars
3rd party APIs
Randomness
Time

Builtin types
"Builtin" types
numpy/pandas
"Structs"

Beware the Dark Side
?? Everything else ??

Over-mocking



http://martinfowler.com/articles/mocksArentStubs.html

A classical TDD approach is to use real object
wherever possible only using a stub/fake/mock
when it is difficult to use the real thing.
The Mockist style prefers to use Mocks for any
object with "interesting behaviour".

Two Schools



are brittle to changes in the SUT
are expensive to maintain
often get thrown away during refactoring
give mocks a bad name
are easy to write ;)
boost coverage stats ;)

Over-mocking

Over mocked tests:



class ConferenceDelegate(object):
    ...

    def rate_talk(self,
                  number_of_kitten_pics,
                  usefulness_of_content,
                  clarity_of_presentation
                  ):
        return number_of_kitten_pics * (usefulness_of_content
                                        + clarity_of_presentation)

ISO-K1773N5



def test_delegate_can_rate_a_talk():
    kittens = MagicMock(name="number_of_kitten_pics")
    usefulness = MagicMock(name="usefulness_of_content")
    clarity = MagicMock(name="clarity_of_presentation")
    
    delegate = ConferenceDelegate()
    
    result = delegate.rate_talk(kittens, usefulness, clarity)
    
    assert result is kittens.__mul__.return_value
    assert kittens.mock_calls == [('__mul__', (usefulness.__add__.return_value,))]
    assert usefulness.mock_calls == [('__add__', (clarity,))]

Overmocked



@pytest.mark.parametrize("kittens,"
                         "usefulness,"
                         "clarity,"
                         "expected_rating",
                         [(1, 1, 1, 2), # ticks all the boxes
                          (0, 1, 1, 0), # no cats no points
                          (1, 0, 1, 1), # lacking content
                          (1, 1, 0, 1), # lacking clarity
                          (10, 0, 1, 10), # loadz of cats
                          (10, 1, 0, 10), # loadz of cats
                          (1, 10, 1, 11), # great content
                          (1, 1, 10, 11), # great delivery
                          ])
def test_delegate_can_rate_a_talk_no_mocks(kittens, usefulness, clarity, expected_rating):
    delegate = ConferenceDelegate()
    assert expected_rating == delegate.rate_talk(kittens, usefulness, clarity)

Phew!



Write tests
Use mocks they are easy and fun
patch is a great tool to inject mocks into
your code
I love sentinels - so should you
Function side_effects are an "occasional
treat"
Never "over mock"

Summary



Questions
https://github.com/burrowsa/mocking
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