
Where is the bottleneck

Manuel Miranda
Software Engineer

Contents

• Strategy: What/How to start

• Basic OS tools

• Resources tools

• Advanced

Strategy: Considerations

When you want to improve your program performance, ask yourself the following:

• Focus: What do you exactly want to accomplish?

• Cost: Does the time you will spend improving performance worth it?

• Code knowledge: Do you control all the code?

• Context awareness: Can external resources affect you?

• Local context: Are your tests reproducing exactly the production execution?

It’s really important to think about this points before starting. They
can save you lots of time!

Strategy: Start

OS tools

• time

• htop

• ntop

• lsof

• vmstat

Resources: memory_profiler

MEMORY_PROFILER
https://github.com/fabianp/memory_profiler

376 Commits

Last commit: 29th Jun

792 Stars

Resources: memory_profiler

Memory profiler is pretty useful, it allows us to have a per function view of memory
consumed. Easy to get a fast picture of how your program memory evolves.

• Full program graph

• Per function graph

• Per line memory consumption

• Trigger for debugger when limit of memory reached

Resources: memory_profiler

- mprof run main.py
- mprof plot
- python –m memory_profiler main.py
- python –m memory_profiler
--pdb-mmem=100 main.py

Resources: line_profiler

LINE_PROFILER
https://github.com/rkern/line_profiler

78 Commits

Last commit: 21st Dec

872 Stars

Resources: line_profiler

Advanced version of cProfile. Shows hits, total time, per hit time and time percentage
for each line of code. Easy for detecting hotspots in your program.

Also compatible with cProfile output.

Progress not lost when Ctrl+C. Displays current status J.

Resources: line_profiler

Resources: Ipython magic

- Supported plugins (not by 5.0 in the case of line_profiler though)

- Interactive profiling for any function

- Easy as:
- %load_ext memory_profiler
- %load_ext line_profiler

Resources: Ipython magic

Advanced: Plop

PLOP
https://github.com/bdarnell/plop

95 Commits

Last commit: 14th Feb

795 Stars

Advanced: Plop

Low overhead profiler. Some people is using it in production systems.

• Really low impact (use of strace and ltrace)

• It displays call graph with time spent on functions

• Flamegraph:

• http://www.brendangregg.com/flamegraphs.html

• https://github.com/brendangregg/FlameGraph

• Viewer running on Tornado

• With a decent setup, you can view the files while executing.

Advanced: Plop

- python -m plop.collector
random_algs.py

- python -m plop.viewer --
datadir=profiles

- python -f flamegraph -m
plop.collector myscript.py

- ./flamegraph.pl profile.flame >
profile.svg

Advanced: Pyformance

PYFORMANCE
https://github.com/omergertel/pyformance

123 Commits

Last commit: 20th Jun

68 Stars

Advanced: Pyformance

Utilities for system and business metrics:

• Counting calls

• Checking average time of a function

• Grouping regex expressions for measuring time

• Measure rate of events over time

• Histograms

• Timers are shared variables. You can use timer(“name”) wherever

Advanced: Pyformance

Send alarm when average higher
than expected
def inner_function():

for n in range(1, 100):
with timer("test").time():

sleep(random.uniform(0.1, 0.3))
n ** n

if timer("test").get_mean() > threshold:
print "\n\nOMG SLOW EXECUTION"
print timer("test").get_mean()
print timer("test").get_max()
print timer("test").get_var()
print "mean rate", timer("test").get_mean_rate()

print "1 min rate", timer("test").get_one_minute_rate()

Advanced: Kcachegrind

KCACHEGRIND
https://kcachegrind.github.io/html/Home.html

809 Commits

Last commit: 6th Jul

--

Advanced: Kcachegrind

Awesome (old) tool for giving global sight of your code:

• Call graph

• Execution time with percentage of time spent

• Block view of time spent for functions

• Time cost per line

• Even assembly code (which of course I use every day)

• Reads from cProfile output (pyprof2calltree)

Advanced: Kcachegrind

Summary

Use whatever tool fits your needs. Some others for other use cases:

• Aiohttp/Django/Flash debug toolbars
• vmprof
• Objgraph
• Snakeviz
• GreenletProfiler
• …

Questions

manuel.miranda@skyscanner.net
manu.mirandad@gmail.com

