PyLLVM

A compiler from a subset of Python
to LLVM-IR

Anna Herlihy
MongoDB
EuroPython Bilbao 2016

Outline

1. Motivation

2. PyLLVM Features

3. Related Work

4. Analysis and Benchmarking

5. Conclusion

Motivation

Motivation: Tupleware

e Distributed analytical framework built at
Brown for running algorithms on large
datasets

e User supplies:
1. data
2. UDF (algorithm)
3. workflow (map, reduce, join, etc.)

e (Goal: language and platform independence

Motivation: The LLVM Compiler
Infrastructure Project

e LLVM-IR is a transportable intermediate
representation by the LLVM Compiler
Project

@ f" (and more)

x86/x86-64 AMD ARM (@nd more)

Mission

The goal of this project is to
provide a Python interface
with Tupleware’s C++
backend to make the user
experience as simple and
straightforward as possible.

Mission: Python and Tupleware

Workflow

-

o

map, filter,
reduce, combine,
join, loop, etc.

~

This talk
A

l

J

Algorithm

-

o

k-means, Naive
Bayes, linear
regression, etc.

~

PYTHQM Boost Python S

J

PYTHON > l

PyLLVM

] LLVM

vy

Tupleware

/

o

C++ Frontend
Operators

~

J

Example Tupleware Usage

from TupleWare import load

def linreg(dims, data, w):

dot = 1.0

c =0

while ¢ < dims:
dot += data[c]*w[c]
c += 1

label = data[dims]

dot *= -label

c2 =0

while(c2 < dims):
g[c2] += dot*data[c2]
c2 += 1

i def run _map(data):
! TS = load(data)
: TS.map(linreg)
: TS.execute()

Tupleware Library Implementation

import PyLLVM
import TupleWrapper

def map(self, udf):
try:

1lvm = PyLLVM.compiler(udf)
except PyLLVM.PyllvmError:

self.backup_map(udf)
except Exception as exc:

raise ValueError("Bad Python in UDF", exc)
else:

TupleWrapper.map(llvm)

PYLLVM

PyLLVM

e Simple, easy to extend, one-pass static
compiler that takes in a subset of Python
most likely to be used by Tupleware user-
defined functions.

e Based on py2llvm, an unfinished Google
Code project from 2010
o https://code.google.com/p/py2llvim/

e Uses llvmpy: wrapper for C++ IR Builder

https://code.google.com/p/py2llvm/
https://code.google.com/p/py2llvm/

PyLLVM: Subset of Python

e Anticipated common requirements for
Tupleware users:

o Machine learning algorithms are often
simple, easily optimized mathematical
functions

e Primarily statically type-inferable code is
handled

e No dictionaries, list comprehensions, or
objects.

PyLLVM: Overview of Design

e Abstract Syntax Tree:

o Python2.7’s compiler package: parse,
walk

e Semantic analysis

o CodeGenLLVM: Visitor class

m SymbolTable: Keeps track of variables
and scope

m TypelInference: Infers expression type
e Code Generation

o 1lvmpy: Generates LLVM-IR: Python
bindings to the C++ LLVM IR-Builder

Static Single Assignment

e LLVM instructions are SSA: Registers can
only be assigned to once

e Result of being halfway between
programming language and machine code

e Do not want to implement entire compiler in
SSA form...

Scoping and Variables

SOLUTION: variables are allocated on the
stack and addresses stored in SymbolTable

e Symbol: class representing variable
o name, type, memory location, etc.

e SymbolTable: stack of tuples, each
representing a scope
o Scope contains name and map of
varname to Symbols

LLVM Types

Types: PyLLVM

LLVM IR Types: Integers, floats, pointers,
arrays, vectors, structs, functions

PyLLVM Types: integers, floats, vectors, lists,
strings, functions

Inferring Types

e LLVM-IR is statically typed, Python is not

e Typelnference infers Python types from
nodes of the AST

o recursively traverses tree until reaches
leaf node, infers based on leaf

o uses symbol table for variables/functions

e Intrinsic math functions return the type
they are passed in to avoid multiple
functions for integer vs. float

PyLLVM Types

. Numerical Values
. Vectors

. Lists

. Strings

. Functions

. Branching and Loops

Ul WN =

Numerical Values

e Integers
o LLVM 32-bit integers
e Floats
o LLVM 32-bit floating point
e Booleans
o 1-bit integers
m converted to 32-bit before being stored
o True + True = 2

PyLLVM Types

1. Numerical Values

. Vectors

. Lists

. Strings

. Functions

. Branching and Loops

U1, WN

Vectors

e 4-element immutable floating point vector
types

O vecC

vector(1,2,3,4)
o vec.x/y/z/w or vec[i]

e Built in: add, subtract, multiply, divide,
compare

e Written specifically for ML functions

PyLLVM Types

1. Numerical Values

2. Vectors

. Lists

. Strings

. Functions

. Branching and Loops

oUW

Lists (WIP)

e Static-length mutable lists
o range, zeros, len
e Based on underlying LLVM array type

o can be populated with constants or
pointers

e alloca array’d onto stack and passed by
pointer (unlike vectors)

o Any lists returned from functions will be
stored on the heap

PyLLVM Types

1. Numerical Values

2. Vectors

. Lists

. Strings

. Functions

. Branching and Loops

O Ul & W

Strings

e Desugared into lists of integers
o strings are lists of characters
o characters can be represented as integers

e Symbol table remembers if list variable
contains integers or characters

o For print, cmp, etc

e That was easy!

PyLLVM Types

. Numerical Values

. Vectors

. Lists

. Strings

. Functions
Branching and Loops

_O\U1-I>(.J~)I\)|—L

Function Definitions

e Can define and call functions from anywhere
in the UDF

e Function signature generated and
arguments added to the symbol table

e The only time where the compiler does 2
passes:
o One descent to extract return type of func

o Pops symbol table scope, calls delete on
LLVM-IR Builder, and runs pass again

Function Arguments

e Since types are not dynamic, all arguments
must have type values

o func(i=int, f=float)
e Type and length of list must be specified
o func(l=1isti8)

o *ONLY* place where subset of Python
differs from real Python

e Can be implemented in future, if only
PEP484 (Type Hints) had been reality...

Intrinsic Functions

e Simple built-in math library
o abs, pw, exp, log, sgrt, int, float
o takes in variable type, returns same type

e |lvmpy does not provide access to
equivalent IR instruction

o Workaround: declare function as header,
LLVM-IR will look up matching function

e print

o handled similarly to intrinsic math
functions

PyLLVM Types

. Numerical Values

. Vectors

. Lists

. Strings

. Functions

. Branching and Loops

AU D WNH

Conditionals: if, for, while

e All supported with some limitations:

o new variables declared within branches
will go out of scope upon exit

o existing vars can be modified

o return within if statements supported
only if every branch contains return

e All types have boolean values

o empty lists are false, nonzero values are
true

Related Work

Numba

e JIT specializing Python compiler by
Continuum Analytics

e Purpose is to compile functions into
executables using LLVM and call them from
Python using the Python-C API

e Goal is to get Python to run fast,
generating IR is only a step along the
way

PyLLVM and Numba Comparison

e Bottom line: same tools, different goals

e Numba provides comprehensive coverage of
Python, and is a more mature project

e In order get LLVM-IR out of Numba, have to
run numba --dump-1lvm Or use pycc

e PyLLVM build “in-house”

Analysis

e Focused on two specific criteria for analysis
o Usability of the frontend
o Code efficiency
o Difficult to compare compilation time

e Sample algorithms: Naive Bayes, k-means,
linear regression, and logical regression.

Analysis: Usability

e PyLLVM does not lose any usability

e Primary advantage of Python is freedom
from memory management and other

bookkeeping

Python C++
def naive bayes(data=list, void naive_bayes(char *data,
counts=1ist, int *counts,
dims=int, int dims,
vals=int, int vals,
labels=int): int labels) {
label=data[dims] char label=data[dims];
counts[label]=+1 ++counts[label];
offset=1abels+label*dims*vals int offset=1labels+label*dims*vals;
while(c in range x): for (int j = @0; j < dims; j++)
counts[offset+c*vals+data[c]]=+1 ++counts[offset+j*vals+datal[j]];
}

Analysis: Benchmarking

e Compilation: PyLLVM vs. Numba
o Only happens once, cost is minor

e Generated LLVM: PyLLVM vs. Clang

o Tested unoptimized LLVM, ultimately
differences likely to be optimized away

Analysis: Executable Runtime

e Generated unoptimized LLVM-IR using clang
e Ran generated LLVM-IR using 11i
e Used system time to compare runtime

e Ran algorithm 2500 times, for 500 trials

Analysis: Executable Runtime

Generated LLVM-IR

200
Bl Pyllvm [Clang

150
?
&
QU
£

; 100
£
8
&

50

0

Naive Bayes Kmeans LinReg LogReg

Algorithm

Results

e Difference between runtimes for system
time is:
o Naive Bayes: 1%
o K-means: 12%
o Linear regression: 9%
o Logical regression: 9%
e Spike in k-means potentially because sqgrt

o llvmpy does not provide direct access to
LLVM's sqgrt instruction

Conclusion

e Overall, were able to achieve goal

o Able to fully integrate Python as a
Tupleware frontend

o To the user, all of Python is supported
(although with performance hit)

e Future work: Dynamically typed variables,
dynamic-length and multidimensional lists,
new native data types (dicts!)

Acknowledgements

e Thank you to Tim Kraska my advisor!

e Alex Galakatos, Andrew Crotty and Kayhan
Dursun for Tupleware help

e¢ Thank you to the lost souls who wrote
py2llvm

e Thank you to MongoDB, specifically A. Jesse
Jiryu Davis and Bernie Hackett for
encouraging me to talk

e Thank you EuroPython!

herlihyap@gmail.com

Original: code.google.com/p/py2llvm

My work: github.com/aherlihy/PythonlLLVM

Tupleware: tupleware.cs.brown.edu

Twitter: @annaisworking

https://github.com/aherlihy/PythonLLVM

