
PyLLVM
A compiler from a subset of Python

to LLVM-IR

Anna Herlihy
MongoDB

EuroPython Bilbao 2016

Outline

1. Motivation

2. PyLLVM Features

3. Related Work

4. Analysis and Benchmarking

5. Conclusion

Motivation

Motivation: Tupleware

● Distributed analytical framework built at
Brown for running algorithms on large
datasets

● User supplies:
1. data
2. UDF (algorithm)
3. workflow (map, reduce, join, etc.)

● Goal: language and platform independence

Motivation: The LLVM Compiler
Infrastructure Project

● LLVM-IR is a transportable intermediate
representation by the LLVM Compiler
Project

ARMAMDx86/x86-64

(and more)

(and more)

Mission

The goal of this project is to
provide a Python interface

with Tupleware’s C++
backend to make the user
experience as simple and

straightforward as possible.

Mission: Python and Tupleware

map, filter,
reduce, combine,
join, loop, etc.

Workflow

k-means, Naive
Bayes, linear

regression, etc.

Algorithm

C++ Frontend
Operators

Tupleware
Boost Python

PyLLVM

PYTHON

PYTHON

 C++

LLVM

This talk

Example Tupleware Usage

from TupleWare import load

def linreg(dims, data, w):
 dot = 1.0

c = 0
while c < dims:

 dot += data[c]*w[c]
 c += 1
 label = data[dims]
 dot *= -label
 c2 = 0
 while(c2 < dims):
 g[c2] += dot*data[c2]
 c2 += 1

 def run_map(data):
 TS = load(data)
 TS.map(linreg)
 TS.execute()

Tupleware Library Implementation
import PyLLVM
import TupleWrapper # Boost C++ binding

def map(self, udf):
 try:
 # Try to get LLVM-IR from PyLLVM.
 llvm = PyLLVM.compiler(udf)
 except PyLLVM.PyllvmError:
 # Unable to compile the UDF, try backup.
 self.backup_map(udf)
 except Exception as exc:
 # The exception was semantic.
 raise ValueError("Bad Python in UDF", exc)
 else:
 # Valid LLVM IR was generated

 # can now call desired operator
 TupleWrapper.map(llvm)

PYLLVM

PyLLVM

● Simple, easy to extend, one-pass static
compiler that takes in a subset of Python
most likely to be used by Tupleware user-
defined functions.

● Based on py2llvm, an unfinished Google
Code project from 2010
○ https://code.google.com/p/py2llvm/

● Uses llvmpy: wrapper for C++ IR Builder

https://code.google.com/p/py2llvm/
https://code.google.com/p/py2llvm/

PyLLVM: Subset of Python

● Anticipated common requirements for
Tupleware users:
○ Machine learning algorithms are often

simple, easily optimized mathematical
functions

● Primarily statically type-inferable code is
handled

● No dictionaries, list comprehensions, or
objects.

PyLLVM: Overview of Design

● Abstract Syntax Tree:
○ Python2.7’s compiler package: parse,

walk

● Semantic analysis
○ CodeGenLLVM: Visitor class

■ SymbolTable: Keeps track of variables
and scope

■ TypeInference: Infers expression type
● Code Generation

○ llvmpy: Generates LLVM-IR: Python
bindings to the C++ LLVM IR-Builder

Static Single Assignment

● LLVM instructions are SSA: Registers can
only be assigned to once

● Result of being halfway between
programming language and machine code

● Do not want to implement entire compiler in
SSA form…

Scoping and Variables

SOLUTION: variables are allocated on the
stack and addresses stored in SymbolTable

● Symbol: class representing variable
○ name, type, memory location, etc.

● SymbolTable: stack of tuples, each
representing a scope
○ Scope contains name and map of

varname to Symbols

LLVM Types

Types: PyLLVM

LLVM IR Types: Integers, floats, pointers,
arrays, vectors, structs, functions

PyLLVM Types: integers, floats, vectors, lists,
strings, functions

Inferring Types

● LLVM-IR is statically typed, Python is not
● TypeInference infers Python types from

nodes of the AST
○ recursively traverses tree until reaches

leaf node, infers based on leaf
○ uses symbol table for variables/functions

● Intrinsic math functions return the type
they are passed in to avoid multiple
functions for integer vs. float

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Numerical Values

● Integers
○ LLVM 32-bit integers

● Floats
○ LLVM 32-bit floating point

● Booleans
○ 1-bit integers

■ converted to 32-bit before being stored
○ True + True = 2

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Vectors

● 4-element immutable floating point vector
types
○ vec = vector(1,2,3,4)

○ vec.x/y/z/w or vec[i]

● Built in: add, subtract, multiply, divide,
compare

● Written specifically for ML functions

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Lists (WIP)

● Static-length mutable lists
○ range, zeros, len

● Based on underlying LLVM array type
○ can be populated with constants or

pointers
● alloca_array’d onto stack and passed by

pointer (unlike vectors)
○ Any lists returned from functions will be

stored on the heap

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Strings

● Desugared into lists of integers
○ strings are lists of characters
○ characters can be represented as integers

● Symbol table remembers if list variable
contains integers or characters
○ For print, cmp, etc

● That was easy!

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Function Definitions

● Can define and call functions from anywhere
in the UDF

● Function signature generated and
arguments added to the symbol table

● The only time where the compiler does 2
passes:
○ One descent to extract return type of func
○ Pops symbol table scope, calls delete on

LLVM-IR Builder, and runs pass again

Function Arguments

● Since types are not dynamic, all arguments
must have type values
○ func(i=int, f=float)

● Type and length of list must be specified
○ func(l=listi8)

○ *ONLY* place where subset of Python
differs from real Python

● Can be implemented in future, if only
PEP484 (Type Hints) had been reality...

Intrinsic Functions

● Simple built-in math library
○ abs, pw, exp, log, sqrt, int, float
○ takes in variable type, returns same type

● llvmpy does not provide access to
equivalent IR instruction
○ Workaround: declare function as header,

LLVM-IR will look up matching function
● print

○ handled similarly to intrinsic math
functions

PyLLVM Types

1. Numerical Values
2. Vectors
3. Lists
4. Strings
5. Functions
6. Branching and Loops

Conditionals: if, for, while

● All supported with some limitations:
○ new variables declared within branches

will go out of scope upon exit
○ existing vars can be modified
○ return within if statements supported

only if every branch contains return
● All types have boolean values

○ empty lists are false, nonzero values are
true

Related Work

Numba

● JIT specializing Python compiler by
Continuum Analytics

● Purpose is to compile functions into
executables using LLVM and call them from
Python using the Python-C API

● Goal is to get Python to run fast,
generating IR is only a step along the
way

PyLLVM and Numba Comparison

● Bottom line: same tools, different goals

● Numba provides comprehensive coverage of
Python, and is a more mature project

● In order get LLVM-IR out of Numba, have to
run numba --dump-llvm or use pycc

● PyLLVM build “in-house”

Analysis

● Focused on two specific criteria for analysis
○ Usability of the frontend
○ Code efficiency
○ Difficult to compare compilation time

● Sample algorithms: Naive Bayes, k-means,
linear regression, and logical regression.

Analysis: Usability

● PyLLVM does not lose any usability
● Primary advantage of Python is freedom

from memory management and other
bookkeeping

void naive_bayes(char *data,
 int *counts,
 int dims,
 int vals,
 int labels) {

 char label=data[dims];
 ++counts[label];
 int offset=labels+label*dims*vals;
 for (int j = 0; j < dims; j++)
 ++counts[offset+j*vals+data[j]];
}

def naive_bayes(data=list,
 counts=list,
 dims=int,
 vals=int,
 labels=int):

 label=data[dims]
 counts[label]=+1
 offset=labels+label*dims*vals
 while(c in range x):
 counts[offset+c*vals+data[c]]=+1

Python C++

Analysis: Benchmarking

● Compilation: PyLLVM vs. Numba
○ Only happens once, cost is minor

● Generated LLVM: PyLLVM vs. Clang
○ Tested unoptimized LLVM, ultimately

differences likely to be optimized away

Analysis: Executable Runtime

● Generated unoptimized LLVM-IR using clang

● Ran generated LLVM-IR using lli

● Used system time to compare runtime

● Ran algorithm 2500 times, for 500 trials

Analysis: Executable Runtime

Results

● Difference between runtimes for system
time is:
○ Naive Bayes: 1%
○ K-means: 12%
○ Linear regression: 9%
○ Logical regression: 9%

● Spike in k-means potentially because sqrt
○ llvmpy does not provide direct access to

LLVM’s sqrt instruction

Conclusion

● Overall, were able to achieve goal
○ Able to fully integrate Python as a

Tupleware frontend
○ To the user, all of Python is supported

(although with performance hit)

● Future work: Dynamically typed variables,
dynamic-length and multidimensional lists,
new native data types (dicts!)

Acknowledgements

● Thank you to Tim Kraska my advisor!
● Alex Galakatos, Andrew Crotty and Kayhan

Dursun for Tupleware help
● Thank you to the lost souls who wrote

py2llvm
● Thank you to MongoDB, specifically A. Jesse

Jiryu Davis and Bernie Hackett for
encouraging me to talk

● Thank you EuroPython!

Original: code.google.com/p/py2llvm

My work: github.com/aherlihy/PythonLLVM

Tupleware: tupleware.cs.brown.edu

Twitter: @annaisworking

herlihyap@gmail.com

https://github.com/aherlihy/PythonLLVM

